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ABSTRACT:
Two main methods have been proposed to derive the acoustical radiation force and torque applied by an arbitrary

acoustic field on a particle: The first one relies on the plane wave angular spectrum decomposition of the incident

field (see Sapozhnikov and Bailey [J. Acoust. Soc. Am. 133, 661–676 (2013)] for the force and Gong and Baudoin

[J. Acoust. Soc. Am. 148, 3131–3140 (2020)] for the torque), while the second one relies on the decomposition of

the incident field into a sum of spherical waves, the so-called multipole expansion (see Silva [J. Acoust. Soc. Am.

130, 3541–3544 (2011)] and Baresch, Thomas, and Marchiano [J. Acoust. Soc. Am. 133, 25–36 (2013)] for the

force, and Silva, Lobo, and Mitri [Europhys. Lett. 97, 54003 (2012)] and Gong, Marston, and Li [Phys. Rev. Appl.

11, 064022 (2019)] for the torque). In this paper, we formally establish the equivalence between the expressions

obtained with these two methods for both the force and torque. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Since the seminal works of Rayleigh,1,2 Langevin,3,4

and Brillouin,5,6 many expressions of the acoustic radiation

force and torque applied by various acoustic fields on differ-

ent types of particle have been derived. King7 was the first

to propose an expression of the acoustic radiation force

applied on a rigid sphere by a plane (standing or progres-

sive) wave. This expression was extended later on by

Yosika and Kawasima8 for compressible particle and

Hasegawa and Yiosika9 for an elastic sphere. The case of

spherical and focused incident waves was addressed by

Embleton10 and Chen and Apfel11 for rigid and elastic

spheres, respectively. Nevertheless, all these cases assume

axisymmetric incident fields centered on the particle, which

considerably simplifies the problem and does not enable one

to compute the three-dimensional (3D) trapping force

applied by a selective tweezer on an object.12 The case of

arbitrary acoustic field was at this point only treated in the

framework of the long wavelength regime (LWR), i.e., for a

particle much smaller than the wavelength.13 Concerning

the torque, the very existence of a torque applied on a spher-

ical particle requires the existence of a momentum carried

out by the wave, which cannot be obtained with an axisym-

metric acoustic field. Busse and Wang14 demonstrated the

role played by the viscous boundary layer on the torque

applied by orthogonal acoustic waves on a spherical particle

in the LWR. Later on, Zhang and Marston15 proposed an

expression of the axial acoustic radiation torque acting on

an axisymmetric particle centered on the axis of a cylindri-

cal acoustical vortex. But again, the proposed expressions

assume certain symmetry of the incident beam and specific

location of the scatterer.

The treatment of the general problem of the acoustic

radiation force and torque applied on a spherical particle of

arbitrary size requires one to solve three major issues: First,

the incident field must be decomposed into a sum of elemen-

tary waves suitable for the treatment of the scattering prob-

lem and then the calculation of the force and torque. In the

angular spectrum method (ASM),16,17 the incident field is

decomposed into a sum of plane waves assuming prior

knowledge of the incident field in a source plane. In the mul-

tipole expansion method (MEM) the incident field is decom-

posed into a sum of spherical waves,18–22 whose respective

weight (the beam-shape coefficients) can be calculated by

different methods.20,23–28

Second, the scattering problem must be solved. For an

arbitrary wave, this task is complexified by the non-

axisymmetry of the incident acoustic field. The ASM allevi-

ates the problem by using the fact that the solution of the

scattering problem for a plane wave is known. Nevertheless,

each plane wave of the angular spectrum decomposition has

a different incident angle. This problem was solved by

Sapozhnikov and Bailey16 by using the Legendre addition

theorem. In the multipole expansion method, the scattering
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problem was solved for an arbitrary spherical wave. It was

shown by Baresch et al.20 that the problem degenerates to

the one of an incident plane wave so that the classical scat-

tering coefficients can be used (see Appendix A in Ref. 20).

Third, the force and torque can be calculated by integrating

the time-averaged linear and angular radiation stress tensor

over the particle surface, respectively. Such integration

over the particle surface can be tedious to perform directly

since (i) the particle surface is vibrating and hence is vary-

ing over time, (ii) the particle geometry may be complex in

the case of non-spherical particles, and (iii) the existence of

viscous and thermal boundary layers must be considered in

the near field. It was first shown by Brillouin5,6 that the

integral over the vibrating surface of the particle can be

transferred to a still surface by replacing the stress tensor

by the so-called Brillouin tensor, which includes the

momentum flux through this steady surface. Later on, it

was shown that the integral can be transferred to a closed

surface in the far field by using the momentum29,30 and

angular momentum balances31–33 in the surrounding fluid

and the Gauss divergence theorem29 or the Reynolds trans-

port theorem.34 Hence, by choosing a spherical surface in

the far field, (i) the integration is conducted over a simpler

surface (concentric with the particle center) and (ii) the far-

field approximation enables one to use asymptotic expres-

sions for Bessel and Hankel functions which simplifies the

integration procedure. This also enables the treatment of

non-spherical particles, e.g., using T-matrix method.22 Note

that (i) one must be cautious when performing the far-field

calculation of the acoustic radiation force as pointed out

recently35,36 and (ii) that the calculation can be performed

without invoking the far-field approximation.36

Of course, the values of the acoustic radiation force and

torque must be independent of the method used to calculate

them. While some links between some of the expressions of

the ARF available in the literature have been previously

evoked,12,37 there is no explicit demonstration of the link

between these complex formulas. The present paper aims at

clarifying this point and formally establishing the equiva-

lence between the different expressions of the ARF and

ART derived with different approaches.

II. DECOMPOSITION OF THE INCIDENT FIELD

In the multipole expansion method (MEM),18–22 the

incident acoustic potential is directly decomposed in the

spherical waves basis as follows:

Ui ¼ U0

X1
n¼0

Xn

m¼�n

am
n jnðkrÞYm

n ðh;uÞe�ixt; (1)

with am
n the incident beam-shape coefficients (BSC), which

set the weight of each spherical wave, and Ym
n ðh;uÞ the nor-

malized spherical harmonics defined by

Ym
n ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n ðcos hÞeimu; (2)

with ðr; h;uÞ the spherical coordinates, U0 the potential

amplitude, jn the Bessel function of the first kind, k the

wavenumber, and Pm
n the associated Legendre functions.

Note that only the Bessel functions of the first kind appear

in this expression since the incident field exists in the

absence of the scatterer and hence must be finite in (r¼ 0),

hence eliminating the Bessel functions of the second kind

which are singular at this point. Different methods can be

used to determine the BSC including analytical methods for

ideal fields such as off-axis cylindrical Bessel beams,26,27

quasi-analytical methods based on the translation-addition

theorem,23,25 and numerical methods based on the transla-

tion and rotation matrices20 when the beam-shape coeffi-

cients of the incident field are known in a specific reference

frame or on numerical quadrature such as the Gauss-

Legendre24 or the Lebedev quadrature28 for an arbitrary

field. Note that in this last case, the field must be known on

a spherical surface surrounding the particle.

In the ASM,16,17 the calculation starts from the prior

knowledge of the incident pressure field in a source plane

(z¼ 0) pijz¼0 ¼ piðx; y; 0Þ, and its decomposition into a sum

of plane waves,

piðx;y;zÞ¼
1

4p2

ð ð
k2

xþk2
y�k2

Sðkx;kyÞeikxxþikyyþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
zdkxdky;

(3)

using the angular spectrum decomposition (2D spatial

Fourier transform) of the source plane field,

S kx; kyð Þ ¼
ðþ1
�1

ðþ1
�1

piðx; y; 0Þe�ikxx�ikyydxdy ; (4)

with kx and ky are the lateral components of the wavenumber

k in Cartesian coordinates, k2
z ¼ k2 � k2

x � k2
y and k ¼ x=c.

If the angle c between the position vector r ¼ xxþ yy

þ zz and the wavevector k is introduced, we see clearly that

the incident field is nothing but the sum of plane waves pk
i

with different incident angles c,

pk
i ðx; y; zÞ ¼ Sðkx; kyÞeikr cos ðcÞ:

Using (i) the known decomposition of a plane wave with an

incident angle c into spherical waves and (ii) the Legendre

addition theorem to express the final result as a function of

the absolute spherical coordinate ðh;uÞ instead of the auxil-

iary angle c, Sapozhnikov and Bailey16 were able to express

the incident field into a sum of spherical waves,

pi ¼
1

p

X1
n¼0

Xn

m¼�n

inHnmjnðkrÞYm
n ðh;uÞ; (5)

with the ASM-based BSC Hnm describing the respective

weight of each spherical wave,

Hnm ¼
ð ð

k2
xþk2

y�k2

S kx; kyð Þ Ym
n hk;ukð Þ

� ��
dkxdky: (6)
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The asterisk designates the complex conjugate and the angle

parameters ðhk;ukÞ in the Fourier space have the relation:

cos hk ¼ ½1� ðk2
x þ k2

yÞ=k2�1=2
and uk ¼ arctanðky=kxÞ. This

decomposition into a sum of spherical waves is necessary to

compute the force and torque since the total field (inci-

dentþ scattered) needs to be integrated over an arbitrary

closed surface surrounding the particle, which for commod-

ity will be chosen as a spherical surface in the far field as

discussed in Sec. IV. The Hnm coefficients can be easily

obtained when the field is known in a source plane by using

the spatial fast Fourier transform of the incident field,38,39

which makes the ASM method very convenient to compute

the force applied on a particle by a field generated by a pla-

nar transducer.39–43

The comparison of Eqs. (1) and (5) and use of the

relationship between the velocity potential and pressure

pi ¼ ixq0Ui (with x the angular frequency and q0 the fluid

density), enables one to establish the relationship between

the incident BSC am
n and the angular spectrum-based BSC

Hnm,

am
n ¼

1

pxq0U0

in�1Hnm; (7)

which is essential to prove the equivalence of MEM and

ASM based ARF and ART formulas. Note that an equiva-

lent form of Eq. (7) has been given in Eq. (15) of Ref. 28 by

comparing two expressions of acoustic pressure.

III. RESOLUTION OF THE SCATTERING PROBLEM

In the MEM, the scattered field, as the incident field is

decomposed directly into a sum of spherical waves,

Us ¼ U0

X1
n¼0

Xn

m¼�n

sm
n hð1Þn ðkrÞYm

n ðh;uÞe�ixt; (8)

with sm
n the beam-shape coefficient of the scattered field.

Note that this time the scattered field is expressed in terms

of the Hankel function of the first kind since the scattered

field is an outgoing wave, hence eliminating the Hankel

function of the second kind (corresponding to converging

wave in the convention used here for the temporal part of

the wave e�ixt). The expression of the scattered beam-shape

coefficients as a function of the incident beam-shape

coefficients requires to solve the scattering problem, i.e., to

determine the partial wave coefficients Am
n defined by

sm
n ¼ Am

n am
n . These coefficients depend on the particle shape,

material composition, and surface boundary condition. In

the MEM, the solution of the scattering problem is a priori
not known since the axisymmetry and resulting simplifica-

tions used in the case of plane waves can no longer be

invoked. The complete problem was solved by Baresch

et al.20 for an elastic sphere through the introduction of three

scalar potentials (one for the longitudinal wave and the two

Debye potentials for the shear wave, solutions of the wave

equation, and then applying the boundary conditions). It was

shown that, in fact, the problem degenerates to the one of

plane incident wave, so that the partial waves coefficient An

computed for a plane wave, which do not depend on the

index m, can be used. Note that in this simplified case, peo-

ple sometime introduce the so-called scattering coefficients
Sn linked to the partial wave coefficients by the formula

An ¼ ðSn � 1Þ=2. Also note that in the general case of non-

spherical particles, the partial wave coefficients can be

determined using the transition matrix method21,22,44 which

makes the theory operable for non-spherical shapes, such as

spheroids45 and finite cylinders.46,47

In the ASM, the treatment relies on known results for

the scattering of a plane wave by a sphere. Indeed, (i) the

incident field has been decomposed into a sum of plane

waves and (ii) the solution of the scattering problem is

known for each plane wave. Hence, using these solutions for

each plane wave and then using (i) the decomposition of a

plane wave into a sum of spherical waves and (ii) the

Legendre addition theorem, the scattered field can also be

decomposed into a sum of spherical waves,

ps ¼
1

p

X1
n¼0

Xn

m¼�n

inHnmAm
n hð1Þn ðkrÞYm

n ðh;uÞ: (9)

IV. CALCULATION OF THE FORCE AND TORQUE

The last step, which is common to ASM and MEM is to

compute the integral of the stress tensor or angular stress

tensor over the surface of the particle to compute the force

and torque, respectively. One major difficulty comes from

the fact that the surface of the particle is vibrating. This

problem can be overcome in two ways: first, using

Lagrangian coordinates instead of Eulerian coordinates and,

second, transferring the integral to a still surface by subtract-

ing the flux of momentum (flux of angular momentum) to

the stress tensor (angular stress tensor) for the force and tor-

que, respectively, as first demonstrated by Brillouin (for the

force).5,6 To simplify the calculation, these integrals can be

transported to any surface surrounding the particle, e.g., for

simplicity a spherical surface in the far field as demonstrated

by Westervelt for the force29,30 and Maidanik and others for

the torque.31–33 Using these results, the integrals to compute

the force F and torque T can be written under the following

form in terms of the acoustic potential ðUi;sÞ of the incident

and scattered field as

F ¼ q0k2

2

ð ð
S0

Re
i

k

@Ui

@r
� Ui

� �
U�s � UsU

�
s

� �
ndS; (10)

T ¼ q0

2
Im

ð ð
S0

@U�i
@r

LUs þ
@U�s
@r

LUi þ
@U�s
@r

LUs

� �
dS

( )
;

(11)

where S0 is a closed spherical surface in the far field cen-

tered at the mass center of the particle, q0 is the density at

rest, “Re” means the real part of a complex number, “Im”

designates the imaginary part, n is the outward unit normal
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vector, and the differential surface area is dS ¼ r2 sin hdhdu
with h and u the polar and azimuthal angles, L ¼ �iðr �rÞ
is the angular momentum operator, with its components in

the three directions Lx;y;z, and the recursion relations of the

normalized spherical harmonics with ladder operators L6

given in detail in Appendix D.

In Sec. V we establish the link between the different

formulas obtained in the literature.

V. EQUIVALENCE OF THE THREE-DIMENSION ARF
FORMULAS

Expressions of the ARF exerted by an arbitrary field on

an arbitrary located spherical scatterer have been established

independently by three different groups: Silva18 and

Baresch et al.20 with a MEM and Sapozhnikov and Bailey

based on the ASM.16 The equivalence between the formulas

obtained by Baresch et al.20 and Sapozhnikov and Bailey16

has been briefly discussed by Thomas et al.12,37 while the

equivalence with Silva’s work has not been investigated yet.

In this section, the reason for the different forms of ARF for-

mulas by Silva18 and Baresch et al.20 is provided (since both

use the MEM), while pointing out some minor existing

issues in the formula and at the same time, for the first time,

providing detailed proof of the equivalence of the ARF for-

mulas for the three works.

A. Equivalence between MEM formula and compact
formulation

1. MEM formula by Silva and Gong et al. and
reindexing

Following the work of Silva18 and of Gong et al.,21 the

dimensionless ARF formulas in terms of the incident am
n and

scattered sm
n BSC are obtained by substituting Eq. (1) and

(8) into Eq. (10) and conducting several algebraic calcula-

tions given in Eqs. (11)–(13) of Ref. 18 by Silva or Eqs.

(12)–(14) of Ref. 21 by Gong et al. The ARF formulas can

be therefore obtained based on the relation with the dimen-

sionless ARF according to Eq. (10) in Ref. 21. Note that for

the two separate derivations, different asymptotic expres-

sions of velocity potentials in the far-field are used: Silva

uses trigonometric functions18 [see Eq. (4) in his paper],

while Gong et al. use the exponential functions21 to approxi-

mate the Bessel and Hankel functions. In addition, the work

of Gong et al. work is an extension of numerical implemen-

tation for non-spherical shapes by using the T-matrix

method.21

However, the ARF formulas by Silva18 and Gong

et al.21 missed a re-indexing step in the scattered BSC

(smþ1
n�1 ; sm�1

n�1 ; and s�m�1
n ), as pointed out recently.12,37 Here,

we explain the reason for the index issue and provide the

good expressions: Silva and Gong et al. use the simplified

double summation symbol
P

nm to represent
P1

n¼0

Pn
m¼�n

to conduct the integral process involving the product of two

spherical harmonics [see Eq. (11) in Ref. 21]. A mistake

appears since the regime of m should be correctly chosen for

the spherical harmonics Ym61
n�1 and Ym

n�1 [as given in Eqs.

(A2) and (A4)] based on the definition of spherical harmon-

ics Ym
n with jmj � n, which means

P
nm is not alwaysP1

n¼0

Pn
m¼�n.

In this work, we re-derive the formulas following the

right indexes (n, m) and therefore get the correct forms as

(see details in Appendix B)

Fx ¼
q0U

2
0

4
Im

X1
n¼0

Xn

m¼�n

b�m
nþ1 am

n þ sm
n

	 

sm�1�

nþ1

hh(

� am�1
nþ1 þ sm�1

nþ1

� �
sm�

n

i
þ bm

nþ1 amþ1
nþ1 þ smþ1

nþ1

� �
s�nm

h
� am

n þ sm
n

	 

smþ1�

nþ1

ii�
; (12a)

Fy ¼
q0U

2
0

4
Re

X1
n¼0

Xn

m¼�n

h
b�m

nþ1 am
n þ sm

n

	 

sm�1�

nþ1

h(

þ am�1
nþ1 þ sm�1

nþ1

� �
sm�

n

i
þ bm

nþ1 amþ1
nþ1 þ smþ1

nþ1

� �
sm�

n

h
þ am

n þ sm
n

	 

smþ1�

nþ1

ii�
;

(12b)

Fz ¼
q0U

2
0

2
Im

X1
n¼0

Xn

m¼�n

cm
nþ1 am�

nþ1 þ sm�
nþ1

	 

sm

n

�(

þ am
n þ sm

n

	 

sm�

nþ1

�)
; (12c)

where n 2 ½0;1� and m 2 ½�n; n�, and the coefficients bm
n

and cm
n defined in terms of n and m are given in Appendix A.

Note that despite the index issue, the numerical compu-

tations in Ref. 21 are correct since the erroneous additional

terms were cancelled in the numerical procedure. This can

be further verified by the comparison of results by Gong

et al. with the partial wave based results by Marston.48 Note

also that this set of formulas can be written in a much more

compact form using the relation sm
n ¼ Am

n am
n , which will be

given in Sec. V A 2.

2. The ARF formulas by Baresch et al.

Another set of ARF formulas based on the MEM, was

derived by Baresch et al. for 3D ARF on an arbitrarily

located elastic sphere, as given by Eqs. (14)–(16) in Ref. 20

[reorganized as Eqs. (1)–(3) by Zhao et al. in Ref. 28]. Note

that there is a typo for the regime of index m (Refs. 12, 20,

and 28): it should be jmj � n instead of jmj < n (otherwise

the formulas are not equivalent to those by Sapozhnikov and

Bailey16) The ARF formulas with the right index regimes by

Thomas and colleagues are equivalent to the above-

corrected version [see Eq. (12) of Silva18 and the formulas

of Gong et al.21].

The difference between formulas by Silva18 (or Gong

et al.21) and Baresch et al.20 are the following. (i) Silva uses

the incident am
n and scattered sm

n BSC. Baresch et al. solved

the scattering problem for an elastic sphere insonified by an

arbitrary incident beam and showed that the problem
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degenerates to the one of the scattering of an incident plane

wave, so that the corresponding partial wave coefficients An

can be used leading to the relation sm
n ¼ Anam

n . (ii) Silva uses

the orthogonality and recursion relationship of normalized

spherical harmonics directly based on Arfken’s textbook

(see Appendix A),49 while Baresch et al. use the orthogonal-

ity relationship of associated Legendre functions (Pm
n ) and

exponential functions, and also the recursion relationship of

associated Legendre functions. This leads to the fact that

there are four terms for the lateral forces and two terms for

the axial force in Silva’s work (without reindexing),18 while

only two terms for the lateral and one term for the axial

forces by Zhao et al.28 (with reindexing during the deriva-

tion procedure).20 (iii) Silva uses the normalized spherical

harmonics, while Baresch et al. use the unnormalized spher-

ical harmonics to derive the ARF formulas,20 which have

been re-organized with normalized spherical harmonics to

be compact by Zhao et al. [Eqs. (1)–(3)].28

3. Compact expression of the ARF for arbitrary
shaped particles

If we substitute the relation sm
n ¼ Am

n am
n for a particle

with an arbitrary shape, the correct version of ARF formulas

in terms of am
n and sm

n in Eq. (12) is further written in a com-

pact manner as

Fx ¼
q0U

2
0

4
Im

X1
n¼0

Xn

m¼�n

�
Cm�1

n b�m
nþ1am

n am�1�
nþ1

(

�Cmþ1
n bm

nþ1am
n amþ1�

nþ1

�)
; (13a)

Fy ¼
q0U

2
0

4
Re

X1
n¼0

Xn

m¼�n

Cm�1
n b�m

nþ1am
n am�1�

nþ1

�(

þCmþ1
n bm

nþ1am
n amþ1�

nþ1


)
; (13b)

Fz ¼
q0U

2
0

2
Im

X1
n¼0

Xn

m¼�n

Cm
n cm

nþ1am
n am�

nþ1

( )
; (13c)

with Cm71
n ¼ Am

n þ 2Am
n Am71�

nþ1 þ Am71�
nþ1 and Cm

n ¼ Am
n

þ2Am
n Am�

nþ1 þ Am�
nþ1. These compact equations (13) are equiv-

alent to the re-organized ones (using normalized spherical

harmonics instead of spherical harmonics in Ref. 20) by

Zhao et al. in a direct way28 when the particle shape is con-

sidered as a sphere (so that Am
n ¼ An and Cm71

n ¼ Cm
n ¼ Cn

¼ An þ 2AnA�nþ1 þ A�nþ1) and the index m is with the right

regime jmj � n.

B. Equivalence analysis of the three sets of ARF
formulas

As claimed above, the different forms of ARF formulas

derived by Thomas and colleagues20,28 (compact form of

correct version of ARF formulas by Silva18 and Gong

et al.21) and Sapozhnikov and Bailey16 come from the

different elementary wave expansion of velocity potential or

pressure. The explicit relation between the beam coefficient am
n

based on MEM and Hnm based on ASM is given by Eq. (7) in

Sec. II, which can be used to substitute into Eq. (13) to derive

the 3D ARF formulas in terms of the notation Hnm introduced

by Sapozhnikov and Bailey based on the ASM. The equiva-

lence between the two sets of formulas will be verified immedi-

ately if Am
n ¼ An is set for a spherical shape (see details in

Appendix C). The question raised by Sapozhnikov and Bailey

in their paper16 between their formula and the one by Silva is

now solved. All in all, considering the correction of the index

issues pointed out above, all the three sets of original 3D ARF

formulas are proved to be equivalent.

VI. EQUIVALENCE OF THREE-DIMENSIONAL ART
FORMULAS

The ART on a particle in an ideal fluid can be calcu-

lated by the integral of the time-averaged angular stress ten-

sor minus the angular momentum flux over a far-field

standard spherical shape centered at the mass center of the

particle15,19,22,31 [see Eq. (11)]. Explicit expressions of 3D

ART formulas have been derived by Silva et al.19 and Gong

et al.22 based on the MEM and Gong and Baudoin17 based

on the ASM.

As for the ART, there are also index issues in the

expression obtained by Silva et al.19 and Gong et al.22 Here,

we provide the correct expressions of ART formulas by

Silva et al.19 and Gong et al.22 based on the multipole

expansion method (see details in Appendix E):

Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n am�

n þ sm�
n

	 

sm�1

n

h(

þ am�1�
n þ sm�1�

n

	 

sm

n

i)
; (14a)

Ty ¼ �
q0U

2
0

4k
Im

X1
n¼0

Xn

m¼�nþ1

�b
m
n am�

n þ sm�
n

	 

sm�1

n

h(

� am�1�
n þ sm�1�

n

	 

sm

n

i)
; (14b)

Tz ¼ �
q0U

2
0

2k
Re

X1
n¼0

Xn

m¼�n

m am�
n þ sm�

n

	 

sm

n

( )
; (14c)

with the coefficients �b
m
n given in Appendix D. Again, it is

noteworthy that the numerical computations in Ref. 22 are

correct since they use the definition for the scattered BSC

that sm
n ¼ 0 when n< 0 or jmj > n.

The relationship sm
n ¼ Am

n am
n can be introduced into Eq.

(14) to obtain a set of compact formulas in terms of the inci-

dent BSC only,

Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n

�C
m
n am�

n am�1
n

( )
; (15a)
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Ty ¼ �
q0U

2
0

4k
Im

X1
n¼0

Xn

m¼�nþ1

�b
m
n

�C
m
n am�

n am�1
n

( )
; (15b)

Tz ¼ �
q0U

2
0

2k
Re

X1
n¼0

Xn

m¼�n

m �D
m
n am�

n am
n

( )
; (15c)

where �C
m
n ¼ Am�1

n þ Am�
n þ 2Am�1

n Am�
n ; �D

m
n ¼ Am

n þ Am
n Am�

n .

The above compact ART formulas are identical to Eqs.

(10)–(12) of Ref. 17 by using the relation between am
n and

Hnm given by Eq. (7) in Sec. II (see details in Appendix F).

Hence, the equivalence of the ART formulas between the

correct form [see Eq. (14)] of the work of Silva et al. and

Gong et al. based on the MEM19,22 and those derived by

Gong and Baudoin based on the ASM17 has been demon-

strated in this section.

VII. CONCLUSIONS AND DISCUSSIONS

In summary, we provide in this paper a clear proof of

the equivalence of the three sets of the 3D acoustic radiation

force (ARF) formulas derived independently by Silva18

(extended later on by Gong et al.21 to arbitrary shape par-

ticles), Thomas and associates,20,28 and Sapozhnikov and

Bailey,16 and the 3D acoustic radiation torque (ART) formu-

las derived by Silva et al.19 (extended by Gong et al.22 to

arbitrary shape particles) and Gong and Baudoin.17 The rea-

sons for the different forms of ARF and ART expressions

are discussed completely in Secs. V and VI, respectively.

The advantage of the MEM-based ARF and ART for-

mulas18,20,21 is that the calculations of 3D ARF and ART

are direct by using the incident BSC am
n of known acoustic

fields which has a long research history in the literature for

scattering problems. For arbitrary fields, numerical methods

based on numerical quadrature24,28 require prior knowledge

of the incident field on a spherical surface surrounding the

particle, which can be difficult to set in practice experimen-

tally. The advantage of the ASM-based ARF16 and ART17 is

that they are easy to set up when the field is known (i.e.,

measured) in a transverse plane, which is convenient for pla-

nar holographic transducers.38–43 Note that this set of formulas

can also be used for ideal beams whose introduced coefficients

Hnm are available either by using the angular spectrum of the

beam Sðkx; kyÞ16 or the relation given in Eq. (7).

To finalize the calculation of the ARF and ART with all

these formulas, the key point is to obtain the partial wave

coefficients Am
n of the particle exactly. Silva,18,19 Thomas

and colleagues,20,28 and Sapozhnikov and Bailey16 discuss

particles with spherical shapes so that Am
n only depends on

the index n, having Am
n ¼ An. Gong et al. derive the formu-

las with Am
n depending on the indexes of (n, m) with several

numerical computation for arbitrary-sized non-spherical

shapes by a semi-analytical T-matrix method.21,22,44 For a

rigid spheroidal particle in the so-called long-wavelength

limit, Silva and colleagues gives the Am
n with the Taylor

expansion up to the dipole (n¼ 1) in spheroidal coordi-

nates50 and obtain concise analytical ARF and ART

expressions using the partial wave expansion.51 Note also

that the overall formulas discussed in the present work are

generally applied for a particle in an ideal fluid but are still

applicable for a particle in a viscous fluid if the viscous

effect in the fluid can be accounted in the expression of scat-

tering (partial wave) coefficients.15,52

From a perspective viewpoint, the present work on the

ARF and ART formulas may be extended for multiple par-

ticles53–55 if the partial wave coefficients are available, which

can be used for the manipulation and assembly of large particles

beyond Rayleigh regime.56,57 Based on Eqs. (13) and (15), the

ARF and ART are closely related to the scattering from the par-

ticle in a fluid. Hence, the scattering characteristics are essential

to the acting force and torque of acoustic field on the particle.

For example, the resonance scattering from an elastic sphere

may be suppressed under an on-axis Bessel beam of selected

parameters and be not with an off-axis incidence,58–60 which

could be used to tune the ARF and ART, such as a stable tractor

(pulling) beam,48,61,62 or a 3D stable trapping23,63 with sup-

pressed spinning rotation. More importantly, the present work

will help to build an acoustical tweezers numerical toolbox44,64

as an analogy to its optical counterpart.65
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APPENDIX A: ORTHOGONALITY AND RECURRENCE
RELATIONS OF SPHERICAL HARMONICS

The orthogonality relationship of normalized spherical

harmonics is given in Eq. (15.138) by Arfken et al.,49

ð2p

0

du
ðp

0

sin hdhYm�
n Ym0

n0 ¼ dnn0dmm0 : (A1)

The recurrence relations of normalized spherical har-

monics involved with trigonometric and exponential func-

tions are given in Eqs. (15.150) and (15.151) by Arfken

et al.,49 respectively,

cos hYm
n ¼ cm

n Ym
n�1 þ cm

nþ1Ym
nþ1; (A2)

with

cm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mÞðn� mÞ
ð2n� 1Þð2nþ 1Þ

s
; (A3)

which is based on a recurrence relation of associated

Lengendre functions [Eq. (15.88) in the textbook of Arfken

et al.], as also used by Baresch et al.20 in Eq. (C5) in

Appendix C and

e6iu sin hYm
n ¼ 6b7m�1

n Ym61
n�1 7b6m

nþ1Ym61
nþ1 (A4)

with
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bm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mÞðnþ mþ 1Þ
ð2n� 1Þð2nþ 1Þ

s
; (A5)

which is based on two recurrence relations of associated

Lengendre functions [Eqs. (15.89) and (15.90) in the text-

book of Arfken et al.], with Eq. (15.89) also used by

Baresch et al.20 in Appendix D.

By using the Euler’s formula e6iu ¼ cos u6i sin u, the

terms of normalized spherical harmonics involved with trig-

onometric functions (cos u sin hYnm and sin u sin hYnm) can

be obtained, which can be further applied into Eq. (11) in

Gong et al.21 for the final 3D ARF expressions. The relation

used for the derivation of Fx is

2 cos u sin hYm
n ¼ b�m�1

n Ymþ1
n�1 � bm

nþ1Ymþ1
nþ1

þ b�m
nþ1Ym�1

nþ1 � bm�1
n Ym�1

n�1 (A6)

and the expression for the derivation of Fy is

2i� sin u sin hYm
n ¼ b�m�1

n Ymþ1
n�1 � bm

nþ1Ymþ1
nþ1

� b�m
nþ1Ym�1

nþ1 þ bm�1
n Ym�1

n�1 : (A7)

APPENDIX B: DETAILED DERIVATION OF ARF WITH CORRECT INDEX

1. Detailed derivation of Fx

Based on the ARF formulas of Eq. (9) from Ref. 21, the expression of the x-component of ARF is

Fx ¼
1

2
q0k2U2

0

ð ð
S0

Re �
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0

in0�n

ðkrÞ2
am

n þ sm
n

	 

sm0�

n0 Ym
n Ym0�

n0

( )
r2 sin h cos u sin hdhdu

¼ � 1

2
q0U

2
0Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in0�n am

n þ sm
n

	 

sm0�

n0

ð ð
S0

Ym
n Ym0�

n0 sin h cos u sin hdhdu

( )
: (B1)

Substituting Eq. (A6) into Eq. (B1), Fx can be divided into four terms,

Fx ¼ �
1

4
q0U

2
0Re

X1
n¼1

Xn�2

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in0�n am

n þ sm
n

	 

sm0�

n0

ð ð
S0

b�m�1
n Ymþ1

n�1 Ym0�

n0 sin hdhdu

(

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in
0�n am

n þ sm
n

	 

sm0�

n0

ð ð
S0

� bm
nþ1Ymþ1

nþ1 Ym0�

n0 sin hdhdu

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in
0�n am

n þ sm
n

	 

sm0�

n0

ð ð
S0

b�m
nþ1Ym�1

nþ1 Ym0�

n0 sin hdhdu

þ
X1
n¼1

Xn

m¼�nþ2

X1
n0¼0

Xn0

m0¼�n0
in
0�n am

n þ sm
n

	 

sm0�

n0

ð ð
S0

� bm�1
n Ym�1

n�1 Ym0�

n0 sin hdhdu

)
: (B2)

It is important to note that the index regimes of (n, m) for different terms are different because the correct index regime of

Ym
n should be n 2 ½0;1� and m 2 ½�n; n� for the indexes. In addition, based on the definition in Eq. (1), the intersection of

regime of (n, m) is listed in Table I.

Using the orthogonality relation of the normalized spherical harmonics in Eq. (A1), Eq. (B2) can be further written as

TABLE I. Regime of (n, m) in normalized spherical harmonics for derivation of Fx and Fy. Note that based on the definition in Eq. (1), we have n 2 ½0;1�
and m 2 ½�n; n�.

n m Intersection

Ymþ1
n�1 n 2 ½1;1� m 2 ½�n; n� 2� n 2 ½1;1�; m 2 ½�n; n� 2�

Ymþ1
nþ1 n 2 ½�1;1� m 2 ½�n� 2; n� n 2 ½0;1�; m 2 ½�n; n�

Ym�1
nþ1 n 2 ½�1;1� m 2 ½�n; nþ 2� n 2 ½0;1�; m 2 ½�n; n�

Ym�1
n�1 n 2 ½1;1� m 2 ½�nþ 2; n� n 2 ½1;1�; m 2 ½�nþ 2; n�
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Fx ¼ �
1
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)
: (B3)

Note that Re Xf g ¼ Im iXf g with X an arbitrary complex number. Here, a re-index is applied with p ¼ n� 1 2 ½0;1� for the

first and fourth term of Eq. (B3)

Fx ¼ �
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)
: (B4)

Now, using a re-index for m: for the first term q ¼ mþ 1 2 ½�p; p� and for the fourth term q ¼ m� 1 2 ½�p; p�, we

have

Fx ¼�
1

4
q0U

2
0Im

X1
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(B5)

which is Eq. (12a) in Sec. V A 1.

2. Derivation of Fy

The expression of the y-component of ARF is

Fy ¼
1

2
q0k2U2
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Xn
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: (B6)

The detailed derivation of Fy is similar to that for the x-component Fx by substituting Eq. (A7) and replacing Eq. (A6) into

Eq. (B6), and using of the orthogonality relationship of normalized spherical harmonics of Eq. (A1). The final expression of

Fy in terms of am
n and sm

n is given in Eq. (12b) in Sec. V A 1, which is not given here for brevity.
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3. Detailed derivation of Fz

The expression of the z-component of ARF is

Fz ¼
1

2
q0k2U2

0

ð ð
S0

Re �
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Substituting Eq. (A2), we have

Fz ¼ �
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: (B8)

For the definition of (n, m) in Eq. (1), it has n 2 ½0;1� and m 2 ½�n; n�. Since Ym
n�1 (n 2 ½1;1� and m 2 ½�nþ 1; n� 1�) and

Ym
nþ1 (n 2 ½�1;1� and m 2 ½�n� 1; nþ 1�) are introduced here, the final regimes of indexes (n, m) are the intersection and

given differently for the first and second part (see Table II).

By using Eq. (A1), the expression of Fz is

Fz ¼ �
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Re-index for the first part of Eq. (B9) using p ¼ n� 1 2 ½0;1� so that m 2 ½�p; p�. The final form of Fz in terms of am
n

and sm
n is

Fz ¼ �
1

2
q0U

2
0Re

X1
p¼0

Xp

m¼�p

i�1 am
pþ1 þ sm

pþ1

	 

sm�

p cm
pþ1 þ

X1
n¼0

Xn

m¼�n

i am
n þ sm

n

	 

sm�

nþ1cm
nþ1

( )

¼ � 1

2
q0U

2
0Re

X1
n¼0

Xn

m¼�n

i am�
nþ1 þ sm�

nþ1

	 

sm

n cm
nþ1 þ

X1
n¼0

Xn

m¼�n

i am
n þ sm

n

	 

sm�

nþ1cm
nþ1

( )

¼ 1

2
q0U

2
0Im

X1
n¼0

Xn

m¼�n

cm
nþ1 am�

nþ1 þ sm�
nþ1

	 

sm

n þ am
n þ sm

n

	 

sm�

nþ1

h i( )
; (B10)

which is Eq. (12c) in Sec. V A 1. Note that Re{X}¼Re fX�g and Re{iX}¼ –Im{X}.

APPENDIX C: EQUIVALENCE OF EQ. (12) AND FORMULAS BY SAPOZHNIKOV AND BAILEY

By substituting Eq. (7) into Eq. (13), we can prove that the three components of ARF formulas for a sphere (with

Am
n ¼ An) are equivalent to those in terms of Hnm by Sapozhnikov and Bailey [see Eqs. (46)–(48) in Ref. 16], respectively.

The detailed derivations are given below. Recall that for a sphere, one has Cm71
n ¼ Cn. The x-component of ARF,

TABLE II. Regime of (n, m) in normalized spherical harmonics for derivation of Fz. Note that based on the definition in Eq. (1), we have n 2 ½0;1� and

m 2 ½�n; n�.

n m Intersection

Ym
n�1 n 2 ½1;1� m 2 ½�nþ 1; n� 1� n 2 ½1;1�; m 2 ½�nþ 1; n� 1�

Ym
nþ1 n 2 ½�1;1� m 2 ½�n� 1; nþ 1� n 2 ½0;1�; m 2 ½�n; n�
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Fx ¼
q0U

2
0

4
Im

X1
n¼0

Xn

m¼�n

Cn b�m
nþ1am

n am�1�
nþ1 � bm

nþ1am
n amþ1�

nþ1

� �( )

¼ 1

4p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

Cn b�m
nþ1 in�1Hnm

	 

inHnþ1;m�1

	 
� � bm
nþ1 in�1Hnm

	 

inHnþ1;mþ1

	 
�h i( )

¼ 1

4p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

iCn �b�m
nþ1HnmH�nþ1;m�1 þ bm

nþ1HnmH�nþ1;mþ1

	 
( )

¼ 1

4p2q0k2c2
Re

X1
n¼0

Xn

m¼�n

Cn �b�m
nþ1HnmH�nþ1;m�1 þ bm

nþ1HnmH�nþ1;mþ1

	 
( )
: (C1)

Note that x ¼ kc with the sound speed in fluid c, and Im iXf g ¼ Re Xf g. By replacing �m with m for the first part, Eq. (C1)

is further written as

Fx ¼
1

4p2q0k2c2
Re

X1
n¼0

Xn

m¼�n

Cnbm
nþ1 �Hn;�mH�nþ1;�m�1 þ HnmH�nþ1;mþ1

	 
( )
; (C2)

which is Eq. (46) in Ref. 16.

The y-component of ARF is

Fy ¼
q0U

2
0

4
Re

X1
n¼0

Xn

m¼�n

Cn b�m
nþ1am

n am�1�
nþ1 þ bm

nþ1am
n amþ1�

nþ1

� �( )

¼ 1

4p2q0k2c2
Re

X1
n¼0

Xn

m¼�n

Cn b�m
nþ1 in�1Hnm

	 

inHnþ1;m�1

	 
� þ bm
nþ1 in�1Hnm

	 

inHnþ1;mþ1

	 
�h i( )

¼ 1

4p2q0k2c2
Re

X1
n¼0

Xn

m¼�n

iCn �b�m
nþ1HnmH�nþ1;m�1 � bm

nþ1HnmH�nþ1;mþ1

	 
( )

¼ 1

4p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

Cn b�m
nþ1HnmH�nþ1;m�1 þ bm

nþ1HnmH�nþ1;mþ1

	 
( )
: (C3)

Similar to the derivation for Fx, taking Cm71
n ¼Cn for a sphere and replacing �m with m, Fy can also be written as

Fy ¼
1

4p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

Cnbm
nþ1 Hn;�mH�nþ1;�m�1 þ HnmH�nþ1;mþ1

	 
( )
; (C4)

which is Eq. (47) in Ref. 16.

The z-component of ARF is

Fz ¼
q0U

2
0

2
Im

X1
n¼0

Xn

m¼�n

Cm
n cm

nþ1am
n am�

nþ1

( )

¼ 1

2p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

Cm
n cm

nþ1ðin�1HnmÞðinHnþ1;mÞ�
( )

¼ 1

2p2q0k2c2
Im

X1
n¼0

Xn

m¼�n

ð�iÞCm
n cm

nþ1HnmH�nþ1;m

( )

¼ � 1

2p2q0k2c2
Re

X1
n¼0

Xn

m¼�n

Cm
n cm

nþ1HnmH�nþ1;m

( )
; (C5)

which is Eq. (48) in Ref. 16 by replacing Cm
n with Cn for a sphere.
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APPENDIX D: ANGULAR MOMENTUM AND LADDER OPERATORS

The ladder operators L6 has the relationship with the lateral components of the angular momentum operator Lx;y:

L6 ¼ Lx 6 iLy.49 The recursion relations of ladder operators L6 (or axial component of angular momentum operator Lz) and

normalized spherical harmonics are66

LþYm
n ¼ �b

�m
n Ymþ1

n ; (D1a)

L�Ym
n ¼ �b

m
n Ym�1

n ; (D1b)

LzY
m
n ¼ mYm

n ; (D1c)

with �b
m
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mÞðn� mþ 1Þ

p
.

APPENDIX E: DETAILED DERIVATION OF ART WITH CORRECT INDEX

1. Detailed derivation of Tx

Based on the ART formulas of Eq. (7) from Ref. 22, the expression of x-component of ART is

Tx ¼ �
q0U

2
0

2k

ð ð
S0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0 Y
m�
n LxYm0

n0 sin hdhdu

( )
: (E1)

With insertion of Eqs. (D1a) and (D1b) into Eq. (E1) and since Lx ¼ ðLþ þ L�Þ=2,

Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0

ð ð
S0

Ym�
n ðLþ þ L�ÞYm0

n0 sin hdhdu

( )

¼ �q0U
2
0

4k
Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0�1

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0

ð ð
S0

Ym�
n

�b
�m0

n0 Ym0þ1
n0 sin hdhdu

(

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0þ1

in�n0 am�
n þ sm�

n

	 

sm0

n0

ð ð
S0

Ym�
n

�b
m0

n0 Y
m0�1
n0 sin hdhdu

)
: (E2)

The regime of ðn0;m0; Þ in the summation symbol is listed in Table III.

Using Eq. (A1), the expression of Tx is

Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0�1

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0
�b
�m0

n0 dnn0dm;m0þ1

(

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0þ1

in�n0 am�
n þ sm�

n

	 

sm0

n0
�b

m0

n0 dnn0dm;m0�1

)

¼ �q0U
2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

am�
n þ sm�

n

	 

sm�1

n
�b
�mþ1

n þ
X1
n¼0

Xn�1

m¼�n

am�
n þ sm�

n

	 

smþ1

n
�b

mþ1

n

( )
: (E3)

A re-index is necessary for the second part of Eq. (E3) by using q ¼ mþ 1 2 ½�nþ 1; n� and noting that �b
�mþ1

n ¼ �b
m
n ,

we have

TABLE III. Regime of ðn0;m0Þ in normalized spherical harmonics for derivation of Fx and Fy. Note that based on the definition in Eq. (1), we have n0 2
½0;1� and m0 2 ½�n0; n0�.

n0 m0 Intersection

Ym0þ1
n0 n0 2 ½0;1� m0 2 ½�n0 � 1; n0 � 1� n0 2 ½0;1�; m0 2 ½�n0; n0 � 1�

Ym0�1
n0 n0 2 ½0;1� m0 2 ½�n0 þ 1; n0 þ 1� n0 2 ½0;1�; m0 2 ½�n0 þ 1; n0�
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Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

am�
n þ sm�

n

	 

sm�1

n
�b
�mþ1

n þ
X1
n¼0

Xn

q¼�nþ1

aq�1�
n þ sq�1�

n

	 

sq

n
�b

q
n

( )

¼ �q0U
2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n am�

n þ sm�
n

	 

sm�1

n þ am�1�
n þ sm�1�

n

	 

sm

n

h i( )
; (E4)

which is Eq. (14a) in Sec. VI.

2. Derivation of Ty

The expression of the y-component of ART is

Ty ¼ �
q0U

2
0

2k

ð ð
S0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0 Y
m�
n LyYm0

n0 sin hdhdu

( )
: (E5)

Similar to the derivation for Tx, the final expression of Ty in terms of am
n and sm

n can be obtained by using Eqs. (D1a) and

(D1b) in Eq (E5) and Ly ¼ ðLþ � L�Þ=2i instead of Lx, as given in Eq. (14b) and omitted here for brevity.

3. Detailed derivation of Tz

The expression of the z-component of ART is

Tz ¼ �
q0U

2
0

2k

ð ð
S0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0 Y
m�
n LzY

m0

n0 sin hdhdu

( )
: (E6)

Inserting Eq. (D1c) into Eq. (E6), we have

Tz ¼ �
q0U

2
0

2k
Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0

ð ð
S0

Ym�
n mYm0

n0 sin hdhdu

( )
: (E7)

By substituting Eq. (A1) into Eq. (E7), the final expression of Tz in terms of am
n and sm

n can be derived as

Tz ¼ �
q0U

2
0

2k
Re

X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
in�n0 am�

n þ sm�
n

	 

sm0

n0 mdnn0dmm0

( )

¼ � q0U
2
0

2k
Re

X1
n¼0

Xn

m¼�n

m am�
n þ sm�

n

	 

sm

n

( )
; (E8)

which is Eq. (14c) in Sec. VI.

APPENDIX F: EQUIVALENCE OF EQ. (14) AND FORMULAS BY GONG AND BAUDOIN

By substituting Eq. (7) into Eq. (15), we can prove that the three components of ART formulas are equivalent to those

in terms of Hnm by Gong and Baudoin [see Eqs. (10)–(12) in Ref. 17], respectively. The detailed derivations are given below.

The x-component of ART is

Tx ¼ �
q0U

2
0

4k
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n

�C
m
n am�

n am�1
n

( )

¼ � 1

4p2q0k3c2
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n

�C
m
n in�1Hnm

	 
�
in�1Hn;m�1

	 
( )

¼ � 1

4p2q0k3c2
Re

X1
n¼0

Xn

m¼�nþ1

�b
m
n

�C
m
n H�nmHn;m�1

( )
; (F1)

which is Eq. (10) in Ref. 17.

The y-component of ART is
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Ty ¼ �
q0U
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X1
n¼0

Xn
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�b
m
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�C
m
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n am�1
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( )

¼ � 1
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Xn

m¼�nþ1

�b
m
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�C
m
n in�1Hnm
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m
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�C
m
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( )
;

(F2)

which is Eq. (11) in Ref. 17.

The z-component of ART is

Tz ¼ �
q0U

2
0

2k
Re

X1
n¼0

Xn

m¼�n

m �D
m
n am�

n am
n

( )

¼ � 1

2p2q0k3c2
Re

�
X1
n¼0

Xn

m¼�n

m �D
m
n in�1Hnm

	 
�
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( )

¼ � 1
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m
n H�nmHnm

( )
; (F3)

which is Eq. (12) in Ref. 17.
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