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Acoustic streaming shows great potential in applications such as bubble dynamics, cell
aggregation, and nanosized particle isolation in the biomedical and drug industries. As the
acoustic shock distance decreases with the increase of incident frequency, the nonlinear
propagation effect will play a role in acoustic streaming, e.g., Eckart (bulk) streaming at
a few gigahertz. However, the theory of source terms of bulk streaming is still missing
at this stage when high-order acoustic harmonics play a role. In this paper, we derive the
source term including the contribution of high-order harmonics. The streaming-induced
hydrodynamic flow is assumed to be incompressible and no shock wave occurs during the
nonlinear acoustic propagation as restricted by the traditional Goldberg number � < 1 or
� ≈ 1, which indicates the importance of nonlinearity relative to dissipation. The derived
force terms allow evaluating bulk streaming with high-order harmonics at gigahertz and
provide an exact expression compared to the existing empirical formulas. Numerical results
show that the contribution of higher-order harmonics increases the streaming flow velocity
by more than 20%. Our approach clearly demonstrates the errors inherent in the expression
introduced by Nyborg which should be avoided in numerical computations as it includes
part of the acoustic radiation force that does not lead to acoustic streaming.

DOI: 10.1103/PhysRevFluids.9.084201

I. INTRODUCTION

Gigahertz acoustics have recently been used in experiments for nanoparticle trapping, enrich-
ment, and separation based on the acoustic streaming effect [1–3]. Acoustic manipulation in the
gigahertz range has potential applications including nanosized biosensors [2], nanoliter microre-
actors [4], and microfluid jet producers [5]. However, the study of gigahertz streaming is just at
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the beginning due to the challenges of fabrication techniques of ultrahigh frequency resonators [6]
and the huge computational costs with direct numerical simulations at such small wavelengths,
especially in three dimensions [7]. For a typical gigahertz tweezer, the wavelength is 1.5 µm at
the frequency of 1 GHz in water, which is much smaller than typical microchannel sizes, e.g., a
few tens or hundreds of micrometers. In addition, it is easy to induce nonlinear propagation at
gigahertz since the shock formation distance (hereafter referred to as shock distance) depends on
the working frequency and the large vibration velocity on the transducer surface [8,9]. These make
the theoretical and experimental studies of gigahertz acoustic tweezers more challenging compared
to that in the frequency regime of megahertz.

The sound waves are produced based on mechanical vibration and are coupled into the fluid
medium for microfluidic applications. The highest efficiency of energy conversion from electrical
to mechanical energies typically occurs at the mechanical resonance, which depends on the desired
acoustic wavelength (or driving frequency). The wavelengths of typical gigahertz transducers in the
coupling medium range from around 100 nm to a few micrometers, leading to the difficulties of
device fabrication. Typical piezoelectric transducers (PZT) use the vibration of planar sources to
produce acoustics with a frequency regime of 1–10 MHz in the field of acoustofluidics. However, it
is a challenge to fabricate PZT at the thickness of nanometers for the frequency at gigahertz since the
resonance depends on the selected vibration mode depending on the piezo thickness. Considering
interdigitated transducers [10] at gigahertz, the distances between electrode fingers are too small to
fabricate with the commonly used fabrication process and cannot withstand high power [6]. This
is partly solved with the successful fabrication of the high-tone bulk acoustic resonators on four
substrates with very high Q factor (up to 48 000) at 1 GHz [11]. Then, Cui et al. [1] combined
the fabrication of the film bulk acoustic wave resonator technique with micro/nanofluidics and
developed the field of gigahertz acoustofluidics.

Compared with the recent development of fabrication techniques and experimental demon-
strations of gigahertz acoustical tweezers, the theories of acoustic bulk streaming at such high
frequencies are not well studied. For most of the published experimental works at gigahertz, empir-
ical expressions of the source term of acoustic streaming are used in the numerical simulations, and
no one seems to verify the streaming flow velocities between the simulation and experiment results
[2,3]. This is generally due to two challenges: (i) There is no available source term for gigahertz bulk
streaming with the consideration of nonlinear acoustic propagation. (ii) The computational cost of
the real experiment configuration is huge because of the small wavelength at the scale of a few
micrometers. Indeed, it is easy to understand that the streaming-induced flow patterns are similar in
the confined microchannels because of the mass conservation of the steady flow. Since the seminal
works of Eckart [12], Nyborg [13,14], and Lighthill [15], the systematic theories of the bulk (Eckart)
streaming are built and developed. A good historical perspective of bulk acoustic streaming can be
found in Ref. [16]. It should be noteworthy that Nyborg derived an expression of the source term
of bulk streaming to solve the Stokes equation for the hydrodynamic flow velocity [13,14] which
is widely used in the research community of this field. However, as pointed out by Lighthill, the
source term by Nyborg contains a gradient term that makes a contribution to the acoustic radiation
pressure instead of streaming [15,16]. The source term of acoustic streaming was recast recently by
Riaud et al. specifying the sole source of bulk streaming without the gradient of acoustic Lagrangian
[17]. In their work, they consider the bulk streaming inside sessile droplets of size 1 mm under the
activation of surface acoustic waves at a frequency of around 20 MHz neglecting the nonlinear
propagation since the Goldberg number [defined in Eq. (1) below] is much smaller than 1 and the
droplet size is much smaller than the shock distance. Hence, the source term is limited to linear
propagation when there are no high-order acoustic harmonics. However, the nonlinear effect of
acoustic propagation cannot be neglected in the frequency regime of gigahertz since the viscous
dissipation is remarkable and the dimensionless Goldberg number is comparable to the unit. This is
the case for the recent experimental works at gigahertz [1].

In this work, we revisit the source term of bulk acoustic streaming with two assumptions: (i)
acoustics are rotational and (ii) the streaming-induced steady hydrodynamic flow is incompressible.
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FIG. 1. (a) The wavelength, acoustic attenuation length, and shock distance versus the incident frequency
from 0.01 MHz to 1000 GHz (both axes are in logarithmic coordinates). B/A = 5.1 is taken from Ref. [18]
for water. The vibration velocity to estimate the shock distance is Uac = 1 m/s based on previous experimental
results from 0.1 to 10 GHz. The attenuation length La is equal to the incident wavelength λ = 0.055 µm at
f ≈ 27.5 GHz (see the gray dashed line). (b) For a special case at frequency f = 1.5 GHz, the wavelength is
λ = 1 µm, the attenuation length is La = 18.4 µm, and the shock distance is Ls = 67.2 µm. The pressure field
in the propagation plane with a circular transducer at f = 1.5 GHz is shown. The pressure is computed using
the “thermoacoustic” interface in COMSOL Multiphysics 6.0 [19] with the detailed governing equations and
boundary conditions given in Sec. III C.

Only weakly nonlinear effects with harmonic waves are taken into consideration and the shock wave
is outside of scope since it will make the second assumption fail. Both theoretical and numerical
examples are proposed to illustrate the issue of Nyborg’s expression which should be avoided as
shown in Sec. III. More importantly, based on the peculiar characteristics of bulk streaming at
gigahertz, the nonlinear effect of acoustic propagation will be considered and a theoretical source
term for this situation is provided in terms of pressure fields of different orders of harmonics. This
work provides a theoretical basis for steady streaming at gigahertz with high-order harmonics.

II. CHARACTERISTIC LENGTHS IN THE FREQUENCY REGIME NEAR 1 GHZ

Compared with the general frequencies in the medical ultrasonic regime (e.g., 1–10 MHz),
there are two different characteristics in the regime near 1 GHz as shown in Fig. 1(a): (i)
The attenuation length La = 2ρ0c3

0/[ω2μsb] is just one order of magnitude as the wavelength at
the typical megahertz regime, and the acoustic Reynolds number is Reac = La/λ � 1 [17]. ρ0
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TABLE I. Physical parameters. The fluid medium in this work is water. f is the incident frequency. Another
nonlinear parameter is defined as β = 1 + B/2A. Uac is the magnitude of the acoustic velocity perturbation at
the transducer surface. Note that a factor of 2 is missing in the definition of La in Refs. [16,17].

Symbol Physical parameter Value

ρ0 Static density 1000 kg/m3

c0 Acoustic velocity 1500 m/s
ω Angular frequency 2π f
μs Dynamic viscosity 1.002 × 10−3 Pa s
ν Kinematic viscosity μs/ρ0

μb Bulk viscosity 2.8 × 10−3 Pa s
b Defined coefficients 4/3 + μb/μs

� Goldberg number La/Ls

La Acoustic attenuation length 2ρ0c3
0/[ω2μsb]

Ls Shock distance c2
0/[ωβUac] [16]

Reac Acoustic Reynolds number La/λ

Rehd Hydrodynamic Reynolds number ρ0|v2|Lc/μs

δ Boundary layer thickness
√

2ν/ω

Lc Microchannel height 60 µm

is the static mass density of the propagation medium, c0 is the sound speed, ω is the angular
frequency, and b = 4/3 + μb/μs is the defined coefficient related to dynamic (μs) and bulk (μb)
viscosities for convenience. The related physical parameters and values for the medium of water
are listed in Table I. At f = 1.5 GHz in water, the wavelength is λ = 1 µm and the attenuation
length is La = 18.4 µm [see Fig. 1(b) for the pressure distribution]. While at f = 1.5 MHz in
water, it has λ = 1 mm and La = 1.84 × 104 mm. (ii) The attenuation length is comparable with
the shock distance Ls = c2

0/[ωβUac] at the typical vibration velocity of the transducer working
at gigahertz (e.g., Uac = 1 m/s). β = 1 + B/[2A] is the nonlinear parameter with two nonlinear
acoustic coefficients A and B. A = ρ0c2

0 and B = ρ2
0 (∂2 p/∂ρ2)s are the first- and second-order

coefficients in the Taylor expansion of pressure and density associated with the material, and the
subscript s represents an isentropic process [8,16,17]. At f = 27.5 GHz as marked with the gray
dashed line in Fig. 1(a), the attenuation length equals the wavelength, i.e., La = λ = 0.055 µm.
That is to say, most of the energy from the transducer will dissipate in the propagation distance of
one wavelength. In this work, only low gigahertz transducers for acoustic steaming will be studied
and they have been used most in recent microfluidics experiments in the regime of gigahertz. In fact,
the shock distance describes the nonlinearity of the acoustic propagation and the attenuation length
is an indicator of the wave dissipation in the medium. Here, the Goldberg number � is introduced to
provide a dimensionless measure of the importance of nonlinearity relative to dissipation with the
definition

� = La

Ls
= 2ρ0c0βUac

ωμsb
. (1)

Note that the attenuation length La is independent of the activation velocity Uac, while the shock
distance Ls has a linear relation with it. In general, there are no high-order harmonics during the
acoustic propagation with � � 1, which is the case in Ref. [17]. When � is around the unit, it is
possible to induce the high-order harmonics which will be discussed in detail in Sec. IV. Note that
the shock distance depends on the Uac and for the case of Uac = 1 m/s in Fig. 1(a), � equals 1 (i.e.,
Ls = La) at f = 0.407 GHz. However, the source term of bulk streaming with the consideration of
high-order acoustic harmonics is not available and this will be solved in the present work.
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III. REVISIT OF SOURCE TERM FOR BULK STREAMING

A. Source term of bulk streaming

Before studying the streaming effect with high-order harmonics, we need to revisit the source
term of bulk streaming. By following the work in Ref. [17], we briefly recall the source term for the
Eckart-type acoustic streaming with bulk waves. To derive the final formula of the streaming source
term, we start with the constitutive equations including the conservation of mass and momentum in
the fluid medium as

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇p + μs�v +
(μs

3
+ μb

)
∇∇ · v, (3)

where ρ, v, and p are the density, velocity vector, and pressure, respectively. t designates the time.
The entropy (s) balance is ensured for the system with ds = 0 and the state equation is

p = p(ρ), with
∂ p

∂ρ

∣∣∣∣
s

= c2
0. (4)

The first-order equation of state is easily obtained by using the Taylor expansion with p1 = c2
0ρ1,

where p1, ρ1 are the first-order acoustic pressure and density. In general, compared with the viscous
effect, the thermal effect is negligible because it is proportional to γ − 1 with γ the adiabatic index
which is weak in liquids [17]. Since only small perturbation occurs with respect to the hydrostatic
parameters, we can apply the perturbation method and hence decompose the physical field X into
three parts: hydrostatic X0, acoustic X1, and hydrodynamic X2. Under the assumption with the
perturbation method, we assume that X0 � X1 � X2. X can be either a scalar or a vector. The time
average of acoustic component X1 is equal to zero, written as 〈X1〉 = 0, while the hydrodynamic
part X2 shows the nonlinear feature with its time average not equal to zero (i.e., 〈X2〉 	= 0). Based
on the above assumptions, we can expand the density ρ, pressure p, and velocity v as follows:

ρ = ρ0 + ρ1 + ρ2,

p = p0 + p1 + p2,

v = 0 + v1 + v2. (5)

Here the particle velocity v0 is zero since the fluid is assumed to be at rest in the absence of acoustic
disturbance. By expanding the above mass and momentum conservation equations up to the first
and second order with some algebraic operations (see details in Appendix A), the source term of
acoustic streaming can be derived as

Fs = −
(

4μs

3
+ μb

)〈
ρ1

ρ0
�v1

〉
, (6)

where � is the Laplace operator with �v1 = ∇2v1 = ∇ · ∇v1. It is noteworthy that this formula
excludes the contribution of the gradient of acoustic Lagrangian, which in fact will not induce
the bulk acoustic streaming [15,17]. In addition, the gradient of acoustic Lagrangian is very large
compared to the sole source term which can possibly result in large computational errors. The
effect of the acoustic Lagrangian gradient has not been studied before and will be demonstrated
numerically in this work (see Sec. III C).

As shown in Appendix B 1, by using the linear wave equation for monochromatic waves, the
source term for acoustic streaming in Eq. (6) can be simplified as

Fs =
(

4μs

3
+ μb

)
ω2

ρ0c4
0

〈p1v1〉, (7)
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which depends on the time-averaged acoustic intensity 〈I〉 = 〈p1v1〉. It indicates that once the
acoustic field is calculated, the source term to compute the steady fluid streaming (v2) is available
to solve the Stokes equation derived in Eq. (A13):

−∇p∗
2 + μs�v2 + Fs = 0, (8)

where p∗
2 is the modified hydrodynamic pressure to remove the contribution of the average acoustic

Lagrangian.
It is noteworthy that the classical source term for acoustic streaming simulation proposed by

Nyborg [13,14] is widely used although it should be avoided (see the recent review in Ref. [16]):

FNb
s = −ρ0∇ · 〈v1 ⊗ v1〉, (9)

where 〈·〉 is the time-average operator. Recent studies have shown that this expression is not
completely related to acoustic streaming, which may cause large numerical errors, and the source
term can be divided into two parts through mathematical derivation [16,17]. In the following, we
propose an analytical example of a one-dimensional (1D) bulk standing wave and a numerical
simulation of a two-dimensional (2D) traveling wave to show the difference between the streaming
field induced by these two source terms, i.e., based on Eqs. (7) and (9) by Nyborg.

B. One-dimensional bulk standing-wave example

In this section, we take the ideal 1D bulk standing waves as an example to show the difference
of the source terms from Nyborg and in Eq. (7). This simple case will easily show the contradiction
of the two source terms for bulk streaming and can be well understood from the point of view of
streaming physics. The acoustic velocity field and pressure field of the 1D plane standing waves can
be expressed as the addition of two ideal counterpropagating plane waves:

v1 = 2vam sin(kz) cos(ωt )ez, (10a)

p1 = 2pam cos(kz) sin(ωt ), (10b)

where vam and pam are the amplitudes of the acoustic velocity and pressure, k is the wave num-
ber, and z is the space coordinate with the unit vector in the propagation direction ez. By substituting
them into the Nyborg source term in Eq. (9), we can get the body force in the propagation
direction as

FNb
s = −2ρ0kv2

am sin(2kz)〈cos(2ωt ) + 1〉. (11)

Obviously, the magnitude of the force FNb
s does not vanish since the time dependence 〈cos(2ωt )+1〉

is not equal to 0. On the other hand, we can get the following different result if we use the source
term in Eq. (7):

Fs =
(

4μs

3
+ μb

)
ω2

c4
0ρ0

〈p1v1〉 ∝ 〈sin(ωt ) cos(ωt )〉 (12)

which vanishes as 0 after the time-average procedure in one period. It is clear that these two results
are contradictory. As observed from Eq. (7), the body force depends on the average acoustic intensity
which is uniform in space for progressive ideal plane waves. Since the standing waves can be
regarded as the addition of two counterpropagating plane waves, the body forces of each plane wave
should have the same magnitude while in reversed directions, leading to the null of the total body
force for the streaming effect. This physical explanation agrees with the results of Eq. (12). Indeed,
the source term FNb

s by Nyborg is not entirely related to the streaming, and it contains the gradient of
acoustic Lagrangian which contributes to acoustic radiation pressure instead of streaming [15,17].
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FIG. 2. The schematic of a 2D acoustic streaming by a planar transducer. The resonator (black area) excites
gigahertz plane waves in the fluid (blue) and forms vortices (closed dashed lines) under the activation of body
force (red arrow). In the acoustic simulation, the wall is set as the impedance boundary condition, and in the
flow field simulation, the wall is set as the no-slip condition. Based on the conservation of fluid inside the
cavity, the Eckart streaming always pushes the fluid up in the center and rolls back again from the two sides.

C. Numerical examples of 2D bulk streaming

Since the wavelength at gigahertz is in the order of nanometers or a few microns, it often
needs small size steps in the computational domain based on the rules of thumb. Hence, the
three-dimensional simulation of bulk streaming problems will suffer the challenge of a massive
amount of numerical computation cost. To reduce the numerical burden, we build a 2D model as
illustrated in Fig. 2, and this will not hinder our understanding of the acoustic streaming mechanism
at this stage.The contradiction between the two streaming source terms has been revealed by
the ideal 1D standing-wave model in Sec. III B. This section will further show the difference of
hydrodynamic flow velocities through numerical simulations. In the following simulations, only
the source terms are different [i.e., Eqs. (7) and (9)]. We use water as the propagation medium
with the parameters listed in Table I. The excitation frequency is f = 1.5 GHz and the vibration
velocity of the transducer with a radius 50 µm is Uac = 0.1 m/s, leading to the Goldberg number
� = 0.027 � 1. Under this condition, the source term of streaming in Eq. (7) is suitable without
the consideration of nonlinear propagation. The boundary layer thickness (or viscous penetration
depth) is δ = √

2ν/ω = 22 nm � Lc = 60 µm with Lc the height of the microchannel. Meanwhile,
the microchannel size is smaller than the shock distance Ls = 67.2 µm so that the shock waves will
not be accumulated and formed. Hence, the bulk streaming is dominant in the fluid domain and the
Rayleigh boundary streaming can be negligible [20].

The numerical simulations of acoustic streaming in this paper are carried out by COMSOL

Multiphysics 6.0 with the flowchart shown in Fig. 3(a). Since the “thermoacoustic” interface uses
fewer approximations (and, of course, requires more computations) than the “pressure acoustics”
interface in COMSOL, we use the thermoacoustic interface to calculate the first-order sound field for
more accurate results. The governing equation of the thermal viscous sound field is as follows [21]:

∂t T1 = Dth∇2T1 + αT0

ρ0Cp
∂t p1,

∂t p1 = 1

γ κ
[α∂t T1 − ∇ · v1],

ρ0∂t v1 = −∇p1 + μs∇2v1 +
(μs

3
+ μb

)
∇(∇ · v1). (13)
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FIG. 3. The flowcharts of the simulation for bulk streaming (a) when the hydrodynamic Reynolds number
is much smaller than 1; (b) when nonlinear propagation is considered.

Here, Dth is the thermal diffusivity, α is the isobaric thermal expansion coefficient, κ is the isentropic
compressibility coefficient, and γ is the specific heat capacity ratio. Our research focuses on fluid
motion within microchannels, therefore the effects of piezoelectric transducers are simulated with
velocity boundary conditions:

u0x = 0,

u0y = Uace−R2/a2
. (14)

For PDMS walls, we use the impedance boundary to simplify the system:

n · ∇p1 = −i
ωρ0

ρici
p1, (15)

where n is the normal vector, ρi = 1070 kg/m3 and ci = 1030 m/s represent the density and sound
velocity of PDMS, respectively, and i is an imaginary unit [22]. Under this boundary condition,
the model assumes that all transmitted waves are absorbed by PDMS without reflecting back into
the microchannel [23]. On the other hand, due to the severe attenuation of gigahertz sound waves
(attenuation distance La = 18.4 µm), the microchannel height is H = 60 µm. Most sound waves
are attenuated before coming into contact with the wall. Therefore, in this paper, we use impedance
boundaries to simulate the influence of PDMS walls, which can better focus attention on the study
of fluid motion in the channel. For the tangential velocity of the wall, we set it to u‖ = 0.

Then, the steady flow simulations are conducted based on the “creep flow” interface with the
input of the source terms under the circumstance that the hydrodynamic Reynolds number is Rehd =
0.072 � 1. All the walls were set with no-slip boundary conditions; that is, the Eulerian velocity
field u2 = 0. Indeed, the simulation with the “laminar” interface obtains the same streaming results
as the creep flow interface case (not shown in the following for brevity).

In the 2D numerical simulations of bulk streaming, we set the volume forces in the propagation
direction Fz and the lateral direction Fr with the flow velocities indicated by the colormap of the
background and the directions indicated by the black arrows in Fig. 4. Because of the symmetry of
the hydrodynamic flows in the microchannel, we show half of the simulation results and put them
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FIG. 4. The streaming simulation of two source terms at 1.5 GHz when the vibration velocity of the
transducer surface is Uac = 0.1 m/s. The radius of the transducer is a = 50 µm. The channel height is
Lc = 60 µm and the width is 200 µm. The left half is simulated by using the recast source term [Eq. (7)], and the
right half is simulated with Nyborg’s source term [Eq. (9)]. The uniform colorbar is used. The color background
represents the velocity distribution of the hydrodynamic flow and the arrows represent the flow directions.
Significant differences between the two source terms are observed to calculate the streaming-induced velocities.
The maximum flow velocity by Nyborg’s expression is 0.02 mm/s, which is much smaller than that with the
present source term in Eq. (7).

together for ease of comparison: the left half is for the source term in Eq. (7) while the right half
is for the source term by Nyborg in Eq. (9). It is obvious that the streaming velocities of these two
terms have a significant difference at this time. Note that the main differences lie in the magnitudes
of the maximum flow velocities, while the hydrodynamic flow patterns are similar because of the
conservation of fluid flow in the microchannels. Through this example, it is obvious that there
are problems in using the classical source term by Nyborg for acoustic streaming simulation. In
addition, it will be noteworthy that an empirical expression of the source term [1,3] is widely used
for the present simulations of gigahertz streaming which is limited to the plane-wave case and could
not predict the exact values of the hydrodynamic flow velocities.

IV. WEAKLY NONLINEAR PROPAGATION WITH HIGH-ORDER ACOUSTIC HARMONICS

The source term of the bulk streaming in Eq. (7) is proper under the assumption of linear acoustic
propagation. However, it does not apply if nonlinear acoustics are considered (e.g., high-order
harmonics) for the streaming phenomenon since the pressure field may include the contribution
of multiple frequencies. To solve the issue, we rederive a general expression of the sole source term
for acoustic streaming with the multifrequency acoustic field in terms of only acoustic pressure p1

as follows [see Eq. (B3)]:

Fs =
(

4

3
μs + μb

)〈
p1

c4
0ρ

2
0

∇ ∂ p1

∂t

〉
(16)

with the detailed derivation of the source expression given in Appendix B 2. This formula has the
advantage to compute the incompressible hydrodynamic fluid motion induced by acoustic streaming
once the acoustic field can be calculated.

Recall the Goldberg number as first introduced in Sec. II, which plays an important role in the
viscous process considering nonlinear effects [8]. It measures the relative importance of nonlinear
effects and dissipation effects. Since only weakly nonlinear propagation is considered in this work
and there are no shock waves as assumed, the following will derive the source terms with Goldberg
numbers within � � 1 and � ∼ 1 based on the analytical expressions of harmonic waves from
a finite-amplitude Gaussian beam in a fluid by Du and Breazeale [24].
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A. Acoustic pressure and frequency spectrum at different �

To calculate the acoustic streaming with nonlinear propagation, we need to solve the pressure
field according to Eq. (16). The nonlinear propagation of acoustics could be calculated with either
analytical methods or numerical simulations. This part will review the analytical expressions of the
acoustic pressure fields of the fundamental and second-order harmonics by Du and Breazeale for
a Gaussian beam from a piston transducer [24]. As Goldberg points out, the shock wave will not
be formed when � < 1. This is because the dissipation effect is significant under the circumstance,
and the harmonics cannot be effectively accumulated. For the piston transducer, we assume that
the vibration velocity of the sound source satisfies the Gaussian function and take the Gaussian
coefficient as a unit for simplicity:

U (R) = Uace−R2/a2
, (17)

where R is the radial coordinate and a is the radius of the piston transducer. By taking the method
from Du and Breazeale, we can expand its acoustic pressure waveform into Fourier series [see
Eqs. (A1) and (A4) in Ref. [24]]:

p1 =
2∑

n=1

Pn sin

[
nω

(
t − z

c0

)]
, (18)

where Pn represents the spatial components of the nth harmonic acoustic pressure, t designates
time, and z is the distance from the transducer surface in the propagation direction. This expression
illustrates the physical mechanism of the nonlinear pressure field in terms of the addition of different
orders of harmonics. For the fundamental component (the first order),

P1( f | z) = pame−αz exp(−R2/a2). (19)

and for the second-order harmonics

P2( f | z) = p2
amkβe−4αz

4αρ0c2
0

e(−2R2/a2 )(e2αz − 1), (20)

where the pressure amplitude at the center of the transducer surface is pam = ρ0c0Uac and α = 1/La

is the attenuation coefficient. The detailed derivation is briefly organized in Appendix B 3.
An example shows that the nonlinear effect starts around � = 3 for a plane wave by Hamilton

and Blackstock, while other scholars select 4.5 as the threshold for shock formation [9]. To compare
the pressure fields with or without high-order harmonics, two pressure amplitudes are selected to
make the Goldberg numbers � = 0.1 and � = 1.8 for the Gaussian beam, respectively. The radius
of the piston transducer is a = 50 µm with the excitation frequency f = 1.5 GHz. The pressure
fields along the propagation direction z are computed with the analytical method and numerical
simulations based on COMSOL [25]. These two results agree well with each other and are shown
(one blue curve for brevity) in Fig. 5(a) at pam = 0.6 MPa and (c) at pam = 10 MPa. The attenuation
distance La is indicated by the vertical dashed lines. To illustrate the nonlinear high-order harmonics
when � > 1, the frequency spectrum based on fast Fourier transform is calculated as shown in
Figs. 5(b) and 5(d). It could be observed that there is a sharp peak at f = 3 GHz for � = 1.8 in the
frequency spectrum of Fig. 5(d) which comes from the contribution of the second-order harmonics.

B. Source terms of streaming with and without high-order harmonics

According to the general source term of acoustic streaming in Eq. (16), explicit expressions with
and without high-order harmonics could be obtained once the pressure fields are known. For the
situation with only the fundamental component, by the insertion of Eq. (18) with (19) into Eq. (16),
we can rewrite the axial body force F s

z as (note n is truncated up to 1 for the fundamental wave case)

F s
z = α

ρ0c2
0

|P1|2, (21)
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FIG. 5. Acoustic pressure based on the theoretical method in Ref. [24] and frequency spectrum with two
different Goldberg numbers. (a) For � = 0.1, the pressure amplitude is pam = 0.6 MPa with the attenuation
distance La = 18.4 µm (indicated by the black dotted line) and the shock distance Ls = 168.1 µm. (b) Only
the fundamental wave appears along with a few sidelobes. There are no obvious high-order harmonics in the
frequency spectrum. (c) For � = 1.8, the pressure amplitude pam = 10 MPa with La = 18.4 µm and Ls =
10.1 µm. (d) Different from the results in (b), the second-order harmonic wave appears in this case.

where |P1|2 = p2
ame−2αze−2R2/a2

. Similarly, by substituting Eq. (18) into Eq. (16), the axial body
force F h

z considering the second-order harmonics can be expressed as

F h
z = α

ρ0c2
0

2∑
n=1

(n2|Pn|2), (22)

where the upper right “h” represents the body force with the contribution of the second-order
harmonics. Indeed, this source term works for high-order harmonics when n > 2. When only
the fundamental wave is considered (n = 1), Eq. (22) degenerates into (21). Note that the lateral
component of the source term vanishes after the time-average procedures, i.e., FR = 0 for the cases
with and without high-order harmonics.

To study the contribution of the second-order harmonics on the total pressure field and body
force, the same piston transducer is used with the initial pressure amplitude pam = 10 MPa at
the excitation frequency f = 1.5 GHz. The sizes of the microchannel are the same as those in
Fig. 4. The simulation flowchart is given in Fig. 3(b) with the pressure field computed based on
the theoretical method in MATLAB and the induced streaming obtained by using COMSOL. Note that
the hydrodynamic flow speed can reach up to 1 m/s, leading to Rehd � 1; the “laminar” interface
is applied in this section. The normalized pressure fields versus the propagation distance z of the
fundamental (red solid line) and second-order (blue dotted line) harmonic waves are shown in Fig. 6.
The surface of the transducer is defined as z = 0. The amplitude of the fundamental component
decreases versus z because of the wave absorption, while the pressure amplitude of the second-order
harmonics increases from the transducer surface to a maximum value at z ≈ 6 µm, which agrees
with the fact that the nonlinearity effect is dominant over the dissipation close to the source. In
addition, the relative axial body force with the consideration of the second-order harmonics with
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FIG. 6. The ratios of pressure magnitude of the fundamental wave p10/pam (red solid line), the second
harmonic wave p20/pam (blue dotted line), and the body force F h

z /Fz (black dashed line) change along the axial
direction when the pressure magnitude is pam = 10 MPa and the frequency is 1.5 GHz. F h

z is the axial body
force considering the contribution of both the fundamental and the second-order harmonics, which is defined
by Eq. (22). Fz is the volume force considering only the fundamental frequency acoustic pressure, which is
determined by Eq. (21). The fundamental sound pressure decreases with the increase of axial distance, and
the second harmonic sound pressure and body force increase first and then reduce with the increase of axial
distance. The attenuated energy of the fundamental wave turns into high-order harmonics.

respect to only the fundamental wave contribution is plotted versus z with the black dashed line in
Fig. 6. A horizontal gray dashed line is also provided as a reference. It is shown that the excess of
the body force comes from the contribution of the second-order harmonics.

To further explore the streaming-induced hydrodynamic motion in the microchannel, we take
the same configuration as in Fig. 6 but double the pressure amplitude pac = 20 MPa to enhance the
contribution of the second-order harmonics. The left half of Fig. 7 shows the streaming patterns
with only the fundamental component, while the right half is for the situation with both the
fundamental and second-order harmonics. The colormap in the background indicates the velocity
amplitude of the hydrodynamic flows with the arrows giving the flow directions. The maximum
hydrodynamic flow velocity increases more than 20% if the second harmonic component is taken
into consideration, as shown in Fig. 7.

V. CONCLUSION AND DISCUSSION

The theory of the source term for bulk acoustic streaming has been developed with an emphasis
on the nonlinear propagation in the frequency regime of gigahertz. A dimensionless number

FIG. 7. Streaming results without and with the second-order harmonics at 1.5 GHz. The acoustic pressure
is 20 MPa. The left half shows the acoustic streaming field with only the contribution of the fundamental wave
with the maximum flow speed of 13.47 m/s, calculated by Eq. (21). The right half considers the contribution
of the second-order harmonics with the maximum flow speed of 17.11 m/s, which is based on Eq. (22). The
color depth represents the streaming velocity.
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called the Goldberg number (�) is introduced to measure the importance of acoustic nonlinearity
relative to dissipation at gigahertz. This work makes it possible to compute the streaming-induced
microfluidic motion for the recent gigahertz devices in a better manner instead of using the empirical
formulas [1,3]. As shown in the numerical simulation, the contribution of high-order harmonics
could increase the maximum velocity of hydrodynamic flows up to 20% if only the fundamental
component is considered in linear propagation. In addition, the source term of bulk streaming in
linear acoustic propagation is revisited in the form of wave damping and acoustic intensity [17].
More importantly, we propose analytical and numerical examples to show the contradictory results
by the source term of linear propagation and the classic expression by Nyborg [13,14]. The term
by Nyborg should be avoided by others (e.g., see Ref. [26]) since it contains the contribution of
acoustic radiation pressure [15,17].

The alternative method to compute the bulk streaming is the full-model direct numerical simula-
tion (DNS) [7]. However, it will take more computational cost and will be challenging to handle the
full simulation in the three-dimensional (3D) domain. The computational burden could be relieved
with the effective boundary conditions developed by Bach and Bruus [27] and using the axial
symmetry of the geometrical model [28]. However, attention should still be paid to the simulation of
3D bulk streaming if there is no axial symmetry with either the present theory or DNS; for instance,
the drop-shaped transducer working at gigahertz in a microchannel [3]. It should be noted that this
work could be helpful to design acoustical tweezers for particle trapping with the consideration of
both the acoustic radiation pressure [29,30] and the streaming-induced drag force.
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APPENDIX A: DERIVATION OF THE SOLE SOURCE OF ACOUSTIC STREAMING

1. First-order perturbation expansion

To derive the source term of acoustic streaming (i.e., sound-induced fluid motion), we need to
bridge the acoustic field (acoustic pressure p1 and hydrodynamic velocity v1) with the fluid velocity
v2. Using the perturbation method, we need to expand the fields up to the first-order and second-
order terms. Firstly, we expand the fields up to the linear limit with the following perturbation:

ρ = ρ0 + ρ1,

p = p0 + p1,

v = 0 + v1. (A1)

Substituting Eq. (A1) into Eqs. (2) and (3), we can obtain the first-order formulas of mass and
momentum conservation, respectively:

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (A2)

ρ0
∂v1

∂t
= −∇p1 + μs�v1 +

(μs

3
+ μb

)
∇∇ · v1, (A3)

where �v1 = ∇ · (∇v1). Since the first-order acoustic field is defined as irrotational (i.e., ∇ × v1 =
0), Eq. (A3) can be further changed into the following form:

ρ0
∂v1

∂t
= −∇p1 +

(
4

3
μs + μb

)
�v1. (A4)
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It should be noted that the derivation of the above equation uses the mathematical identity of the
vector Laplacian: ∇∇ · v1 = ∇2v1 + ∇ × ∇ × v1 [see Eq. (3.70) in Ref. [31]].

2. Second-order perturbation expansion

Since acoustic streaming is a nonlinear phenomenon, we need to expand the fields up to the
second order as given in Eq. (5). After substitution into the mass conservation equation, one obtains

∂ρ2

∂t
+ ∇ · (ρ1v1) + ρ0∇ · v2 = 0. (A5)

Considering the steady-state acoustic streaming:

ρ0∇ · v2 = −∇ · (ρ1v1), (A6)

where the mass source term −∇ · (ρ1v1) at the right-hand side of the equation represents the
compressibility. In theory, because the phase difference of the first-order velocity v1 and density
ρ1 is π/2, one has 〈ρ1v1〉 = 0 after performing the time averaging. In other words, the mass source
term is zero and the assumption of incompressibility is reasonable. Throughout the whole work, the
incompressible flow assumption is held, so that

∇ · v2 = 0. (A7)

Before expanding the momentum conservation equation [Eq. (3)] up to the second-order, we first
use the mass conservation to cancel some items in the momentum conservation [see Eq. (3)]:[

∂ρ

∂t
+ ∇ · (ρv)

]
v + ρ

∂v
∂t

+ ρv · ∇v = −∇p + μs�v +
(μs

3
+ μb

)
∇∇ · v (A8)

with the terms in the first square brackets vanishing based on the global mass conservation as given
in Eq. (2). Note that the identity ∇ · (ρv ⊗ v) = ρv · ∇(v) + v∇ · (ρv) is used here. By insertion
of Eq. (5) into (A8) and taking the equation up to the second order:

ρ0
∂v2

∂t
+ ρ1

∂v1

∂t
+ ρ0v1 · ∇v1 = −∇p2 + μs�v2 +

(μs

3
+ μb

)
∇∇ · v2. (A9)

Since only the steady acoustic streaming is of interest, the first term of Eq. (A9) vanishes with
∂v2/∂t = 0.

The last term on the right-hand side in the second-order momentum conservation equa-
tion [Eq. (A9)] vanishes. To isolate the hydrodynamic fluid motion from the acoustic perturbation
over time (i.e., ∂v1/∂t), we need to recall the first-order momentum conservation in Eq. (A4), which
is rewritten as the following for convenience:

ρ1
∂v1

∂t
= −ρ1

ρ0
∇p1 + ρ1

ρ0

(
4

3
μs + μb

)
�v1. (A10)

Substituting Eq. (A10) into Eq. (A9), we get

−ρ1

ρ0
∇p1 + ρ1

ρ0

(
4

3
μs + μb

)
�v1 + ρ0v1 · ∇v1 = −∇p2 + μs�v2. (A11)

If we take the time average of the above Eq. (A11) and use the definitions of kinetic energy
density 〈K〉 = 〈ρ0v1 · ∇v1〉 = 〈∇(1/2ρ0v2

1 )〉 and potential energy density 〈U〉 = 〈ρ1/ρ0∇p1〉 =
〈∇[p2

1/(2ρ0c2
0 )]〉 (note that the first-order equation of state is applied here), the second-order

momentum conservation equation can be expressed as

∇〈L〉 +
(

4μs

3
+ μb

)〈
ρ1

ρ0
�v1

〉
= 〈−∇p2 + μs�v2〉, (A12)

084201-14



ECKART STREAMING WITH NONLINEAR HIGH-ORDER …

where the time-averaged acoustic Lagrangian is defined as 〈L〉 = 〈K − U〉. As noted, the acoustic
Lagrangian is independent of the viscous effect and hence not affected by the wave attenuation,
while the acoustic streaming is induced by the transfer of acoustic momentum to the viscous mode
through wave attenuation. That is to say, the averaged acoustic Lagrangian 〈L〉 is not related to the
steady acoustic streaming and can be balanced with a hydrostatic pressure gradient, having ∇p∗

2 =
∇p2 + 〈L〉[15,17]. Hence, the second-order momentum conservation equation can be finally written
as

−∇p∗
2 + μs�v2 + Fs = 0, (A13)

where the sole source for steady acoustic streaming is

Fs = −
(

4μs

3
+ μb

)〈
ρ1

ρ0
�v1

〉
. (A14)

We use the hydrodynamic Reynolds number Rehd to characterize the relative contribution of the
inertia term ρ0(v2 · ∇)v2 and the viscosity term μs∇2v2 [15]:

Rehd = ρ0v2d

μs
, (A15)

where v2 is the characteristic streaming velocity of the system, d is the characteristic length of the
system, and d ∼ 60 µm. The hydrodynamic Reynolds number is equal to 1 when the streaming
velocity is

vcr = μs

ρ0d
= 16.7 mm/s. (A16)

When Rehd � 1 (v2 � vcr ), the inertia term ρ0(v2 · ∇)v2 is dominant; the inertia term cannot
be ignored and we use the Lighthill theory to simulate the acoustic streaming. At this point, the
governing equation becomes

ρ0(v2 · ∇)v2 + μs�v2 − ∇p2 = Fs
Nb. (A17)

When Rehd � 1 (v2 � vcr ), the viscosity term is dominant, the ρ0(v2 · ∇)v2 will disappear, and the
governing equation will be restored to (A13).

This makes it possible to use commercial software like COMSOL to solve the acoustic streaming
problems with the source term induced by acoustic field.

APPENDIX B: EXPLICIT EXPRESSIONS OF SOURCE TERMS

1. Monochromatic fundamental wave

For most applications using the acoustic streaming effect, the acoustic wave is considered as a
monochromatic wave with the linear wave equation for the velocity as

∂2v1

∂t2
− c2

0�v1 = 0, (B1)

where ∂2/∂t2 = −ω2 for a single-frequency fundamental harmonic wave with ω = 2π f the angular
frequency. Hence, the wave equation can be simplified as �v1 = −ω2v1/c2

0. With insertion of the
steady wave equation into the source term of Eq. (A14) with the combination of the first-order
equation of state, the sole source of acoustic streaming is

Fs =
(

4μs

3
+ μb

)
ω2

c4
0ρ0

〈p1v1〉 (B2)

with the average acoustic density 〈I〉 = 〈p1v1〉. This formula is also given in Eq. (19) of Ref. [16].
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2. High-order harmonic waves

When the weak nonlinear effect induces a few high-order harmonics, e.g., up to the order of
n = 2, the source term for the acoustic streaming given in Eq. (B2) will not apply, which is limited
to the case of a single-frequency fundamental wave. Under this condition, we have to rederive
the source term based on the general expression of Eq. (A14) with only two assumptions: the
irrotational acoustic field (∇ × v1 = 0) and the incompressible streaming fluid field (∇ · v2 = 0).
By combining the first-order mass conservation equation [see Eq. (A2)] and the first-order equa-
tion of state, the relation between the acoustic pressure p1 and the velocity vector v1 can be derived
as ∇p1/(ρ0c2

0 ) = �v1 with vector identity ∇∇ · v1 = ∇2v1 + ∇ × ∇ × v1. By insertion of this
relation into the general expression of body force Fs in Eq. (A14), one can derive the following
source form including only the acoustic pressure:

Fs =
(

4

3
μs + μb

)〈
p1

c4
0ρ

2
0

∇ ∂ p1

∂t

〉
. (B3)

This form is helpful to deal with acoustic streaming problems if the acoustic field with high-order
harmonics is solved with either analytical or numerical methods.

Consider the acoustic pressure form including low-order harmonics [24]:

p1 = P1 sin

[
ω

(
t − z

c0

)]
+ P2 sin

[
2ω

(
t − z

c0

)]
=

2∑
n=1

Pn sin

[
nω

(
t − z

c0

)]
. (B4)

Substituting the above equation into Eq. (B3), the following form of body force can be obtained:

F h
z = α

ρ0c2
0

2∑
n=1

〈
n2P2

n

〉
. (B5)

The orthogonality of trigonometric functions is used in the derivation of the above formula, that
is, 1/T

∫ T
0 [sin(nωt )sin(mωt )]dt = 0 when n 	= m and T = 2π/ω is the period for the fundamental

harmonics.

3. Pressure fields of high-order harmonic waves by Du and Breazeale

By using the perturbation method to solve the nonlinear wave equation (first proposed by
Kuznetsov [32]), we can obtain the following fundamental quasilinear solution [see Eq. (4) in
Ref. [24] with z/z0 � 1 and γ ≈ π/2]:

P1( f | z) = pam
e−αz√

1 + (z/z0)2
exp

(
− R2/a2

1 + (z/z0)2

)
, (B6)

where z0 = ka2/2. It is noted that the near-field condition is applicable (z � z0) when the channel
height is small. In this case, the diffraction effect is very weak, and therefore the acoustic pressure
in Eq. (B6) can be simplified as

P1( f | z) = pame−αze(−R2/a2 ). (B7)

Note that in Blackstock’s study [8], the extra attenuation (EXDB) is very small (the EXDB
refers to the loss beyond the normal small signal attenuation e−αz) when the Goldberg number
� ∼ 1. Under this condition, low-order harmonics will be generated, while no shock waves will be
formed. With the help of the Hankel transform, P2 can be calculated by following the work of Du
and Breazeale [see Eqs. (11) and (12) in Ref. [24]]:

P2( f | z) = pamD0e−4αz

4
√

1 + (z/z0)2
exp

(
− 2R2/a2

1 + (z/z0)2

)√
H2

2 + F 2
2 (B8)
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with

H2 =
∫ σ

0

e2αz0σ
′

√
1 + (z/z0)2

cos[tan−1(σ ′)]dσ ′ (B9)

and

F2 =
∫ σ

0

e2αz0σ
′

√
1 + (z/z0)2

sin[tan−1(σ ′)]dσ ′, (B10)

where σ = z/z0 and D0 = 2z0/Ls. Considering the near-field condition z � z0, we can further
simplify the second harmonic acoustic pressure Eq. (B8) as

P2( f | z) = p2
amkβe−4αz

4αρ0c2
0

exp(−2R2/a2)(e2αz − 1). (B11)

Note that the solutions for higher harmonics up to the fourth order are also listed in the Appendix
of Ref. [24].
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