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Abstract

PCOCMOT is a parallel computer program for simulating nonlinear dispersive tsunami

waves. It is developed based on the shallow water model COMCOT (Cornell Multi-grid Cou-

pled Tsunami) and the depth-integrated non-hydrostatic model, with the motivation to en-

hance computational efficiency and accuracy of large-scale tsunami simulations. The main

features of PCOMCOT include: (1) accounting for wave dispersion by correcting shallow water

equations with non-hydrostatic pressure; (2) moving boundary technique for inundation; (3)

eddy-viscosity scheme for wave breaking; (4) nested grid system for cross-scale tsunami model-

ing; (5) parallel implementation with MPI library. This manual provides a detailed description

of the governing equations and numerical schemes, as well as instructions on how to use the

program. Besides, some examples are presented for validating PCOMCOT against analytical

solutions, laboratory experiments and real tsunami observations.

Source code can be downloaded from https://github.com/yifanzhu-fluid/PCOMCOT
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1 Introduction

In the past twenty years, various tsunami models have been developed for tsunami prediction and

warning, including the 2D depth-integrated models and the 3D models directly solving the Navier-

Stokes equations. The 2D models are adopted much more widely than 3D models, as they have

sufficient accuracy and much lower computational cost. There are basically two types of 2D models,

i.e., the shallow water models which treat tsunamis as ideal long waves, and the Boussinesq-type

models considering wave dispersion. Most operational tsunami codes are based on the shallow water

equations (SWEs), such as COMCOT (Liu et al., 1998;Wang and Liu, 2006), GEOCLAW (LeVeque

et al., 2011), MOST (Titov and González , 1997; Titov and Synolakis, 1998), TUNAMI (Imamura,

1996), etc. These codes are commonly applied to tsunamis generated by large earthquakes, and

have been validated by many real tsunami events (e.g., Wang and Liu, 2006; Harig et al., 2008;

Arcos and LeVeque, 2015; Heidarzadeh et al., 2016; Oishi et al., 2015). For landslide tsunamis

and trans-oceanic earthquake tsunamis, where the wavelength is relatively short or the propagation

distance is as long as thousands of kilometers, the dispersive effects may be significant (Glimsdal

et al., 2013). Under such circumstances, the Boussinesq-type models can provide more accurate

results. Different Boussinesq-type models like FUNWAVE (Shi et al., 2012), JAGURS (Baba et al.,

2015, 2017), and COULWAVE (Lynett and Liu, 2004; Lynett et al., 2002) are now available, and

are mainly used by the scientific community in a research context.

Although the Boussinesq-type models satisfactorily describe the propagation process of tsunami

waves, they are quite difficult to solve. The higher-order derivatives in the dispersive terms of

Boussinesq-type equations can easily cause numerical instability, so it is generally required to ei-

ther simplify the governing equations or implement complicated numerical treatment. Baba et al.

(2015) rewrite the dispersive terms for constant water depth with conserved variables (i.e., volume

flux), and solve the equations with the finite-difference scheme. For non-uniform water depth, the

higher-order derivatives of non-conserved variables are unavoidable, and more advanced schemes

are needed to improve stability. For example, Shi et al. (2012) utilize the MUSCL-TVD finite-

volume scheme and shock-capturing technique to solve the fully nonlinear Boussinesq equations.

These complex methods are much more time-consuming than solving the SWEs. As both accuracy

and efficiency are important in tsunami modeling, we aim to seek a dispersive model which can be

stably solved with relatively simple schemes.
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The non-hydrostatic model, which decomposes the water pressure into hydrostatic and non-

hydrostatic components, are commonly used in 3D modeling of free surface flows (e.g., Casulli ,

1999; Koçyigit et al., 2002; Ma et al., 2012; Stelling and Zijlema, 2003; Zijlema et al., 2011). Such

model effectively describes wave dispersion, and just 2∼3 vertical grid cells can yield good results

for highly dispersive waves (Stelling and Zijlema, 2003). When using a single vertical layer, the 2D

version (i.e., depth-integrated non-hydrostatic model) shows accuracy comparable to the classical

Boussinesq equations, but is much simpler without higher-order derivatives (Stelling and Zijlema,

2003; Yamazaki et al., 2009; Zijlema and Stelling , 2008). The depth-integrated non-hydrostatic

model accounts for wave dispersion by correcting the SWEs with non-hydrostatic pressure terms,

and can be solved efficiently and stably with a semi-implicit scheme (e.g., NEOWAVE, Yamazaki

et al., 2009, 2011). This scheme is directly applicable to existing shallow water models, that is,

adding the implicitly solved correction terms to the explicit solution of SWEs.

In this study, we develop a depth-integrated non-hydrostatic model and the corresponding

tsunami simulation package named PCOMCOT (Parallelized COMCOT). We theoretically derive

the depth-integrated non-hydrostatic model based on the Boussinesq equations. The resulting

governing equations are shown to have slightly better accuracy for wave dispersion than those in

previous studies (Stelling and Zijlema, 2003; Yamazaki et al., 2009; Zijlema and Stelling , 2008).

Our non-hydrostatic model is added to the widely used tsunami package COMCOT (Cornell Multi-

grid Coupled Tsunami, An et al., 2014; Wang and Liu, 2006; Liu et al., 1998). Firstly, the SWEs

are explicitly solved with the similar method as COMCOT. Then, the non-hydrostatic pressure is

estimated implicitly from a Poisson-type equation and is used to correct the shallow water solution,

which gives the dispersive results. For near-shore processes, a moving-boundary technique is used

to track wave run-up and run-down, and an eddy-viscosity scheme is employed to handle wave

breaking. A nested grid system is adopted for tsunami modeling in different scales. The entire

program is parallelized with the MPI library based on space domain decomposition.

In summary, PCOMCOT is capable of simulating the whole life span of tsunamis — genera-

tion, propagation and inundation. It calculates nonlinear, dispersive, and breaking tsunami waves

stably and efficiently. Some important features of PCOMCOT are listed below.

• Non-hydrostatic pressure added to shallow water equations for wave dispersion

• Moving boundary technique for run-up and run-down.
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• Eddy-viscosity scheme for wave breaking.

• One- and two-way nesting grids.

• Parallel implementation with MPI library.
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2 Governing Equations

2.1 Depth-integrated Non-hydrostatic Model

In this section, we describe the governing equations for depth-integrated non-hydrostatic free surface

flows. These equations are the ones that PCOMCOT solves to simulate tsunami waves. Here, for

the first time, the depth-integrated non-hydrostatic model is theoretically derived based on the

Boussinesq equations. By adopting a more realistic approximation of non-hydrostatic pressure, the

accuracy in dispersion is slightly improved compared with the previous models (Yamazaki et al.,

2009; Stelling and Zijlema, 2003; Zijlema and Stelling , 2008), without changing the simple form.

In the non-hydrostatic model, the water pressure p is decomposed into a hydrostatic part p
sta

and a non-hydrostatic part p
dyn

, as follows.

p = ρ
(
p

sta
+ p

dyn

)
= ρ

[
g(η − z) + p

dyn

]
, (2-1)

in which η represents the surface elevation, g is the gravitational acceleration, and the pressure

components psta and p
dyn

are normalized by water density. Thus, neglecting viscosity, the 3D

continuity equation and incompressible Navier-Stokes equations are expressed as

▽ · u+
∂w

∂z
= 0,

∂u

∂t
+ u · ▽u+ w

∂u

∂z
+ g▽η + ▽p

dyn
= 0,

∂w

∂t
+ u · ▽w + w

∂w

∂z
+
∂p

dyn

∂z
= 0,

(2-2a)

(2-2b)

(2-2c)

in which u and w denote the horizontal and vertical velocity components, respectively. Note that

the gradient operator ▽ works only in horizontal direction. The kinematic and dynamic boundary

conditions at the free surface and the seabed are

∂η

∂t
+ u · ▽η − w = 0, z = η,

p
dyn

= 0, z = η,

u · ▽h+ w = 0, z = −h,

(2-3a)

(2-3b)

(2-3c)

in which h is the still water depth varying in space.

8



For the sake of clarity, we manipulate the equations in their dimensionless form. The wave

amplitude A, the characteristic water depth h0, the wavenumber k, and the characteristic phase

speed of linear long wave
√
gh0 are used for the non-dimensionalization. Following Chiang et al.

(2005), the dimensionless variables are

(x′, y′) = k(x, y), z′ =
z

h0
, t′ = k

√
gh0t, h′ =

h

h0
,

η′ =
η

A
, u′ =

u

ε
√
gh0

, w′ =
µ

ε
√
gh0

w, p′dyn =
pdyn
gA

.

(2-4)

Here we have introduced two important small parameters ε = A/h0 and µ2 = (kh0)
2, which

represent wave nonlinearity and frequency dispersion, respectively. They are assumed to be in the

same magnitude for weakly nonlinear and moderately dispersive waves, that is,

O(ε) ≈ O(µ2) ≪ 1. (2-5)

The governing equations (2-2a) to (2-2c) and boundary conditions (2-3a) to (2-3c) are nondimen-

sionalized to be 

µ2▽ · u+
∂w

∂z
= 0,

∂u

∂t
+ ε

(
u · ▽u+

1

µ2
w
∂u

∂z

)
+ ▽η + ▽p

dyn
= 0,

∂w

∂t
+ ε

(
u · ▽w +

1

µ2
w
∂w

∂z

)
+
∂p

dyn

∂z
= 0,

(2-6a)

(2-6b)

(2-6c)



µ2

(
∂η

∂t
+ εu · ▽η

)
− w = 0, z = εη,

p
dyn

= 0, z = εη,

µ2 u · ▽h+ w = 0, z = −h.

(2-7a)

(2-7b)

(2-7c)

Note that the primes of the dimensionless variables are omitted for convenience.

By integrating the continuity equation (2-6a) along the z direction from −h to εη and applying

the kinematic boundary conditions (2-7a, 2-7c), we obtain the 2D continuity equation as

∂η

∂t
+ ▽ ·

[(
h+ εη

)
u
]
= 0, (2-8)

where u is the depth-averaged horizontal velocity defined as u = 1
h+εη

∫ εη

−h
udz. Note that the
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Leibniz rule is used in the integration, that is,

▽ ·
∫ εη

−h

udz =

∫ εη

−h

▽ · udz + u
∣∣∣
z=εη

· ε▽η + u
∣∣∣
z=−h

· ▽h. (2-9)

Since we are seeking equations that have similar accuracy as the Boussinesq equations , we

will directly use the solutions of the Boussinesq equations to simplify the governing equations. For

the classical Boussinesq equations with terms up to O(ε, µ2)(e.g., Chiang et al., 2005; Peregrine,

1967), the horizontal and vertical velocities u and w are written as


u = u+ µ2u∗,

w = −µ2
[(
z + h

)
▽ · u+ u · ▽h

]
.

(2-10a)

(2-10b)

Here, u∗(x, y, z, t) is the dispersive component of horizontal velocity, and
∫ εη

−h
u∗dz = 0. By sub-

stituting (2-10a, 2-10b) into equations (2-6b, 2-6c), and ignoring the higher-order terms, the N-S

equations are approximated as
∂

∂t

(
u+ µ2u∗)+ εu · ▽u+ ▽η + ▽p

dyn
= 0,

∂w

∂t
+
∂p

dyn

∂z
= 0.

(2-11a)

(2-11b)

Integrating equations (2-11a, 2-11b) over total water depth, and neglecting O(εµ2) terms, we obtain

the following depth-integrated momentum equations after some manipulations.
∂F

∂t
+ ε▽ ·

(
FF

D

)
+D▽η + ▽

(∫ εη

−h

p
dyn

dz

)
− q▽h = 0,

∂W

∂t
− q

D
= 0.

(2-12a)

(2-12b)

Here F is the horizontal volume flux, FF is a dyadic tensor (i.e., the outer product of F and

itself), D is the total water depth, q is the non-hydrostatic pressure at the bottom, and W is the

depth-averaged vertical velocity.

F =
(
h+ εη

)
u, D =

(
h+ εη

)
, q = p

dyn

∣∣∣
z=−h

, W =
1

h+ εη

∫ εη

−h

w dz. (2-13)

Because the vertical velocity varies linearly in z direction as indicated by equation (2-10b), W is

simply the average of w at the free surface and the bottom. Again, please note that the Leibniz
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rule is applied when integrating ut and ▽p
dyn

along z direction, which is
∂

∂t

∫ εη

−h

udz =

∫ εη

−h

∂u

∂t
dz + ε

∂η

∂t
u,

▽
∫ εη

−h

p
dyn

dz =

∫ εη

−h

▽p
dyn

dz + p
dyn

∣∣∣
z=εη

ε▽η + p
dyn

∣∣∣
z=−h

▽h.

(2-14a)

(2-14b)

And the relation below is used to derive the conservative form in equation (2-12a).

−∂η
∂t

u+
(
h+ εη

)
u · ▽u = ▽ ·

[(
h+ εη

)
uu

]
−
{
∂η

∂t
+ ▽ ·

[(
h+ εη)u

]}
u = ▽ ·

(
FF

D

)
. (2-15)

The above depth-integrated continuity and momentum equations (2-8, 2-12) are expressed in di-

mensional form as 

∂η

∂t
+ ▽ · F = 0,

∂F

∂t
+ ▽ ·

(
FF

D

)
+ gD▽η + ▽

(∫ η

−h

p
dyn

dz

)
− q▽h = 0,

∂W

∂t
=

q

D
,

(2-16a)

(2-16b)

(2-16c)

where F =
∫ η

−h
udz =

(
h + η

)
u, D = h + η, and W is simply the average value of w at the free

surface and the bottom given by (2-3a, 2-3c). It should be emphasized that the depth-integrated

horizontal momentum equation here is valid for arbitrary ε, and the vertical momentum equation

is accurate to (ε, µ2). Thus, these equations have the same accuracy in nonlinearity and dispersion

as the classical Boussinesq equations. However, equations (2-16) cannot be solved yet, because the

integration of p
dyn

is not given. A reasonable approximation of p
dyn

is needed for evaluation and

simplification of this integration.

The expression of p
dyn

corresponding to the classical Boussinesq equations is given by Peregrine

(1967) as

p
dyn

= z
∂

∂t
▽ · (hu) + z2

2

∂

∂t
▽ · u, (2-17)

in which p
dyn

varies quadratically in the vertical direction. This expression cannot be directly

adopted in the depth-integrated non-hydrostatic model, because depth-integration of (2-17) would

introduce complex coefficients of q to the horizontal momentum equation. These coefficients contain

higher-order derivatives, making it highly difficult to stably solve q in numerical computation. To
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simplify the depth-integration of p
dyn

, we rewrite (2-17) as

p
dyn

=

{(
z + h

)2 −D2

2
+ τD

[(
z + h

)
−D

]}
▽ · ut. (2-18)

Here, we assume that D ≈ h, which only causes difference in the order of O(εµ2). And the

dimensionless parameter τ in (2-18) is expressed as

τ =
ut · ▽h
h▽ · ut

∼ ▽h
kh

=
1

2π

λ

h/▽h
. (2-19)

Though τ is generally a variable with respect to time and space, its order can be roughly estimated

to be ▽h/(kh), which represents the contribution of water depth variation to wave dispersion. Since

p
dyn

mainly exists for short waves in the deep ocean with smooth bottom, |▽h| is much less than kh

in most cases where dispersive effects are significant. Thus, it is reasonable to assume that τ ≈ 0.

Correspondingly, the vertical distribution of p
dyn

is approximated as a pure quadratic function of

z + h (i.e., vertical distance from the seabed), and the integration of p
dyn

over total water depth

becomes ∫ η

−h

p
dyn

dz ≈
∫ η

−h

(
z + h

)2 −D2

2
▽ · utdz = −D

3

3
▽ · ut =

2

3
qD. (2-20)

Substituting (2-20) into (2-16b), we finally obtain the governing equations of the depth-integrated

non-hydrostatic model, that is

∂η

∂t
+ ▽ · F = 0,

∂F

∂t
+ ▽ ·

(
FF

D

)
+ gD▽η + α

[
D▽q + q▽

(
η − βh

)]
= 0,

∂W

∂t
=

q

D
,

(2-21a)

(2-21b)

(2-21c)

in which the values of coefficients α and β are α = 2/3, β = 0.5.

The governing equations (2-21) are the same as the conservative shallow water equations,

except the addition of a vertical momentum equation and the non-hydrostatic terms in the horizontal

momentum equation. Thus, the whole system is closed with three unknowns {η,F, q} being solved

by three equations. In the above derivation, we approximate the complex vertical distribution of

p
dyn

as a simple quadratic function. As a result, the horizontal momentum equation is significantly

simplified to (2-21b). By avoiding higher-order derivatives, we can obtain similar dispersive results
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as the classical Boussinesq equations with much simpler schemes, which is the main advantage of

the depth-integrated non-hydrostatic model.

In previous studies of depth-integrated non-hydrostatic model (e.g., Yamazaki et al., 2009;

Stelling and Zijlema, 2003), a linear vertical distribution of p
dyn

is simply assumed, which leads

to a horizontal momentum equation with α = 0.5, β = 1.0. In fact, non-hydrostatic pressure of

moderately dispersive waves varies quadratically instead of linearly along z direction, as is shown

by the Boussinesq equations. In this study, we propose a more realistic approximation of p
dyn

(i.e.,

a pure quadratic function of z + h), and derive a different horizontal momentum equation with

α = 2/3, β = 0.5. Such modification slightly improves the accuracy of the depth-integrated non-

hydrostatic model, and brings it closer the classical Boussinesq equations. In numerical tests, our

model performs better for smooth bathymetry than the previous one, though the difference in the

leading and the first trailing waves is not significant.

2.2 Governing Equations in Cartesian Coordinates

The governing equations (2-21) together with bottom friction effects in Cartesian coordinates are

written as

∂η

∂t
+
∂M

∂x
+
∂N

∂y
= 0,

∂M

∂t
+

∂

∂x

(
M2

D

)
+

∂

∂y

(
MN

D

)
+ gD

∂η

∂x
= −α

[
D
∂q

∂x
+ q

∂(η − βh)

∂x

]
− fx,

∂N

∂t
+

∂

∂x

(
MN

D

)
+

∂

∂y

(
N2

D

)
+ gD

∂η

∂y
= −α

[
D
∂q

∂y
+ q

∂(η − βh)

∂y

]
− fy,

∂W

∂t
=

q

D
,

(2-22a)

(2-22b)

(2-22c)

(2-22d)

in which η is the free surface elevation, (M,N) denote the volume fluxes in x and y directions

respectively, D = η + h is the total water depth, q is defined as the non-hydrostatic pressure at

the bottom, W is the depth-averaged vertical velocity equal to the average of w at the surface and

the seabed given by (2-3a, 2-3c), and (fx, fy) are the bottom friction in x and y directions. The
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bottom friction is evaluated via Manning’s formula, that is
fx =

gn2

D7/3
M(M2 +N2)1/2,

fy =
gn2

D7/3
N(M2 +N2)1/2,

(2-23)

where n is the Manning’s roughness coefficient which is usually set to ∼ 0.03.

2.3 Governing Equations in Earth Spherical Coordinates

On the surface of Earth, all the differential operators should be expressed in the spherical coordinates

defined by (R, x, y), where R is the constant Earth radius, x and y are longitude and latitude,

respectively. By rewriting all the terms in spherical coordinates and considering the influence of

Earth rotation, the governing equations on Earth surface are

∂η

∂t
+

1

R cos y

[
∂M

∂x
+

∂

∂y
(N cos y)

]
= 0,

∂M

∂t
+

1

R cos y

∂

∂x

(
M2

D

)
+

1

R

∂

∂y

(
MN

D

)
− sin y

R cos y

2MN

D
+

gD

R cos y

∂η

∂x

= −α
[

D

R cos y

∂q

∂x
+

q

R cos y

∂(η − βh)

∂x

]
− fx + 2NΩsin y,

∂N

∂t
+

1

R cos y

∂

∂x

(
MN

D

)
+

1

R

∂

∂y

(
N2

D

)
+

sin y

R cos y

M2 −N2

D
+
gD

R

∂η

∂y

= −α
[
D

R

∂q

∂y
+
q

R

∂(η − βh)

∂y

]
− fy − 2MΩsin y,

∂W

∂t
=

q

D
,

(2-24a)

(2-24b)

(2-24c)

(2-24d)

where Ω is the angular velocity of Earth rotation, and the corresponding terms represent Coriolis

forces.
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3 Numerical Method

The governing equations of the depth-integrated non-hydrostatic model are solved with a semi-

implicit staggered finite-difference scheme. In such method, the shallow water equations without

the non-hydrostatic pressure are firstly solved explicitly to give an intermediate result. The flux-

centered scheme of de Almeida et al. (2012) is adopted for improving the stability of shallow water

solutions. Then, the non-hydrostatic pressure is implicitly solved from a Poisson-type equation.

Finally, the shallow water solution is corrected by the non-hydrostatic pressure, and the dispersive

result is obtained. Besides, a moving boundary technique is adopted to compute inundation, and the

empirical eddy-viscosity scheme is used for wave breaking. Nested grids are employed to simulate

tsunamis in different scales, and both one-way and two-way nesting algorithms are provided. All the

numerical implementation is parallelized by space domain decomposition. The parallel algorithm

of the implicit solver is designed specifically based on the structure of PCOMCOT, so that the time

cost is further reduced.
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Figure 3.1 Staggered grid setup in PCOMCOT. The surface elevation η, non-hydrostatic pressure
q, the vertical velocity at the free surface ws and that at the bottom wb are defined at the center
of each grid cell. While the volume flux components M and N are defined at the edges between
adjacent cells.
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3.1 Solution of Shallow Water Equations

The shallow water equations in the Cartesian or Earth coordinates comprise the continuity equation

(2-22a) or (2-24a), and the horizontal momentum equations (2-22b, 2-22c) or (2-24b, 2-24c), with

the non-hydrostatic terms neglected. By further ignoring the nonlinear terms in the momentum

equations, the linear shallow water equations are obtained. Both the linear and nonlinear shallow

water equations are solved explicitly in the staggered grids shown in Figure 3.1, where the water

depth hi,j and surface elevation ηi,j are defined at the center of grid cell (i, j), while the volume

fluxes Mi,j and Ni,j are evaluated at the cell edges (i+ 1/2, j) and (i, j + 1/2), respectively.

Most tsunami models including COMCOT (Wang and Liu, 2006; Liu et al., 1998), solve the

linear shallow water equations with a forward time-centered space (FTCS) scheme. The FTCS

scheme is simple and efficient, but has some stability problems at low friction, which usually

causes spurious unphysical oscillations near coastlines (de Almeida et al., 2012; Bates et al., 2010).

de Almeida et al. (2012) have demonstrated that the numerical instabilities originate from the lack

of diffusive terms in the modified equations of FTCS scheme, and proposed a “q-centered” scheme

(referred to as “flux-centered” in this paper, for ease of understanding) to address this problem.

The flux-centered scheme introduces extra numerical diffusion to the error terms, without changing

the governing equations to be solved. In PCOMCOT, the simple and effective flux-centered scheme

is adopted for improving stability and ensuring a smooth solution of shallow water equations. This

scheme is the same as the FTCS method, except that each flux variable at the previous time step

is replaced by the weighted average of itself and those on the two neighboring cell edges.

In Cartesian coordinates, the linear shallow water equations are discretized as

ηn+1
i,j = ηni,j −

∆t

∆x

(
Mn

i,j −Mn
i−1,j

)
− ∆t

∆y

(
Nn

i,j −Nn
i,j−1

)
,

Mn+1
i,j = θMn

i,j +
1− θ

2

(
Mn

i−1,j +Mn
i+1,j

)
− gDn+1

i+1/2,j

∆t
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ηn+1
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2

(
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− gDn+1
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(3-1)
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In Earth coordinates, the discretization is given as

ηn+1
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(3-2)

In the above finite difference formulation, ∆t denotes the time step size, ∆x and ∆y the

grid sizes in x and y directions, respectively. The parameter θ is the weighting factor of the flux-

centered scheme, and can be adjusted between 0 and 1. With θ = 0, the Lax-Wendroff diffusive

scheme (Lax and Wendroff , 1960) is obtained, while θ = 1 restores the FTCS formulation without

numerical diffusion. In our tests, we reduce θ from 0.99 to 0.7, and obtain similar waveforms without

unrealistic oscillations. Thus, θ is set as 0.99 in PCOMCOT, to effectively stabilize the solutions

and minimize the extra numerical diffusion.

The flow depth at cell edges is evaluated with the upwind scheme of Kowalik et al. (2005),

which is 
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(3-3a)

(3-3b)

The bottom friction terms are calculated as
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(3-4)

17



And the fluxes not originally defined in the staggered grids are estimated with the average of existing

ones around them. 
Mi−1/2,j+1/2 =

1

4

(
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)
,
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)
.

(3-5)

At each time step, the surface elevation η is firstly calculated from the continuity equation with

horizontal volume fluxes M and N at the previous time step. Then, the momentum equations are

used to update M and N .

For nonlinear shallow water equations, the nonlinear convection terms are discretized with an

upwind scheme and then added to the solution of linear momentum equations.

In Cartesian coordinates, the nonlinear momentum equations are discretized as
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Nn+1
i,j = linear terms− ∆t

∆x

(
MV2 −MV1

)
− ∆t

∆y

(
NV2 −NV1

)
.

(3-6)

In Earth coordinates, the discretization is expressed as

Mn+1
i,j = linear terms− ∆t

R∆x cos yj

(
MU2 −MU1

)
− ∆t

R∆y

(
NU2 −NU1

)
+

∆t sin yj
R cos yj

2Mn
i,jN

n
i+1/2,j−1/2

Dn+1
i+1/2,j

,

Nn+1
i,j = linear terms− ∆t

R∆x cos yj+1/2

(
MV2 −MV1

)
− ∆t

R∆y

(
NV2 −NV1

)

− ∆t sin yj+1/2

R cos yj+1/2

(
Mn

i−1/2,j+1/2

)2

−
(
Nn

i,j

)2

Dn+1
i,j+1/2

.

(3-7)

Here linear terms represent the terms on the right-hand side of the discretized linear momentum

equations in (3-1) or (3-2), and the nonlinear terms in parentheses are evaluated with the upwind
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scheme given below.

MU2 −MU1 =



(
Mn

i,j

)2

Dn+1
i+1/2,j

−

(
Mn

i−1,j

)2

Dn+1
i−1/2,j

, Mn
i,j ≥ 0,

(
Mn

i+1,j

)2

Dn+1
i+3/2,j

−

(
Mn

i,j

)2

Dn+1
i+1/2,j

, Mn
i,j < 0,

NU2 −NU1 =



Mn
i,jN

n
i+1/2,j−1/2

Dn+1
i+1/2,j

−
Mn

i,j−1N
n
i+1/2,j−3/2

Dn+1
i+1/2,j−1

, Nn
i+1/2,j−1/2 ≥ 0,

Mn
i,j+1N

n
i+1/2,j+1/2

Dn+1
i+1/2,j+1

−
Mn

i,jN
n
i+1/2,j−1/2

Dn+1
i+1/2,j

, Nn
i+1/2,j−1/2 < 0,

MV2 −MV1 =



Mn
i−1/2,j+1/2N

n
i,j

Dn+1
i,j+1/2

−
Mn

i−3/2,j+1/2N
n
i−1,j

Dn+1
i−1,j+1/2

, Mn
i−1/2,j+1/2 ≥ 0,

Mn
i+1/2,j+1/2N

n
i+1,j

Dn+1
i+1,j+1/2

−
Mn

i−1/2,j+1/2N
n
i,j

Dn+1
i,j+1/2

, Mn
i−1/2,j+1/2 < 0,

NV2 −NV1 =



(
Nn

i,j

)2

Dn+1
i,j+1/2

−

(
Nn

i,j−1

)2

Dn+1
i,j−1/2

, Nn
i,j ≥ 0,

(
Nn

i,j+1

)2

Dn+1
i,j+3/2

−

(
Nn

i,j

)2

Dn+1
i,j+1/2

, Nn
i,j < 0.

(3-8a)

(3-8b)

(3-8c)

(3-8d)

3.2 Solution of Non-hydrostatic Model

The non-hydrostatic pressure can be implicitly calculated using the solution of shallow water equa-

tions, and is then used to correct the hydrostatic solution to account for wave dispersion. To distin-

guish the intermediate hydrostatic result from the final non-hydrostatic solution, we use F̃(M̃ ,Ñ )

and ũ(ũ, ṽ) to represent the horizontal volume flux and the depth-averaged horizontal velocity

from the shallow water equations, while F(M,N) and u(u, v) for the final non-hydrostatic coun-

terparts. To construct the implicit equation of non-hydrostatic pressure, we express the horizontal

and vertical velocities as functions of q, and substitute these functions into a rewritten form of

the continuity equation (2-21a). The resulting Poisson-type equation is solved efficiently with the

ILU-preconditioned Bi-CGSTAB method.
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Firstly, we rewrite the continuity equation (2-21a) with horizontal and vertical velocities.

Again, this is done in dimensionless form, to clearly show that the O(µ2) accuracy in wave dispersion

is retained. According to (2-10a), by neglecting O(µ4) terms, the dimensionless kinematic boundary

conditions (2-7a, 2-7c) can be written as
ws = µ2

(
∂η

∂t
+ εu · ▽η

)
,

wb = −µ2 u · ▽h,
(3-9)

in which ws and wb are the vertical velocities at the free surface and the bottom, respectively.

Substituting (3-9) into (2-8), the following relation is obtained.

∂η

∂t
+ ▽ ·

[(
h+ εη

)
u
]
=

(
∂η

∂t
+ εu · ▽η

)
+ u · ▽h+

(
h+ εη

)
▽ · u

=
(
h+ εη

)
▽ · u+

ws − wb

µ2
= 0.

(3-10)

Thus, the 2D continuity equation can be rewritten as

µ2▽ · u+
ws − wb

h+ εη
= 0, (3-11)

and its dimensional form is

▽ · u+
ws − wb

D
= 0. (3-12)

Note that in the above analysis, we have not introduced any extra equation other than the governing

equations (2-21), because the kinematic boundary conditions have been used for deriving the original

continuity equation (2-21a). The rewritten form of continuity equation (3-12) is valid to O(µ2),

while the original one is an exact relation.

Then, we express the velocity variables in terms of q, and substitute them into (3-12). Ac-

cording to the non-hydrostatic horizontal momentum equation (2-21b), at the (n+1)-th time step,

the dispersive volume flux can be expressed as

Fn+1 = F̃n+1 − α∆t
[
Dn+1▽q + q▽

(
η − βh

)n+1
]
, (3-13)

where the superscript (n+1) of q is dropped for simplicity. Dividing both sides of (3-13) with total
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water depth, the dispersive depth-integrated horizontal velocity is

un+1 = ũ
n+1 − α∆t

[
▽q + q

▽
(
η − βh

)n+1

Dn+1

]
. (3-14)

Since w varies linearly in z direction for moderately dispersive flows, the vertical velocity at the

free surface can be determined from the vertical momentum equation (2-21c) as

wn+1
s = wn

s + wn
b − wn+1

b +
2∆t

Dn+1
q, (3-15)

where the bottom vertical velocity wb is estimated from the kinematic boundary condition (2-3c).

By substituting (3-14) and (3-15) into (3-12), we obtain the Poisson-type equation of non-hydrostatic

pressure, which is

−α∆t
{
▽2q + ▽ ·

[
q
▽
(
η − βh

)n+1

Dn+1

]}
+

2∆t(
Dn+1

)2 q = −▽ · ũn+1 − wn
s + wn

b − 2wn+1
b

Dn+1
. (3-16)

Discretization of (3-16) in the staggered grids shown in Figure 3.1 yields the linear algebraic

equation system of q, that is

a1i,jqi−1,j + a2i,jqi+1,j + a3i,jqi,j−1 + a4i,jqi,j+1 + a5i,jqi,j = bi,j . (3-17)

In Cartesian coordinates, the coefficients and forcing terms in (3-17) are expressed as

a1i,j =
α∆t

(∆x)2
(
− 1 +

1

2
φi−1,j

)
, a2i,j =

α∆t

(∆x)2
(
− 1− 1

2
φi,j

)
,

a3i,j =
α∆t

(∆y)2
(
− 1 +

1

2
ψi,j−1

)
, a4i,j =

α∆t

(∆y)2
(
− 1− 1

2
ψi,j

)
,

a5i,j =
α∆t

(∆x)2

[(
1 +

1

2
φi−1,j

)
+
(
1− 1

2
φi,j

)]

+
α∆t

(∆y)2

[(
1 +

1

2
ψi,j−1

)
+

(
1− 1

2
ψi,j

)]
+

2∆t(
Dn+1

i,j

)2 ,
bi,j = − ũ

n+1

i,j − ũ
n+1

i−1,j

∆x
− ṽ

n+1

i,j − ṽ
n+1

i,j−1

∆y
−
wn

s i,j + wn
b i,j − 2wn+1

b i,j

Dn+1
i,j

,

(3-18)
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in which the vertical velocity at the bottom wb is calculated with an upwind scheme as

wn+1
b i,j =−

uni−1/2,j

∆x
×

hi,j − hi−1,j , uni−1/2,j ≥ 0,

hi+1,j − hi,j , uni−1/2,j < 0,

−
vni,j−1/2

∆y
×

hi,j − hi,j−1, vni,j−1/2 ≥ 0,

hi,j+1 − hi,j , vni,j−1/2 < 0.

(3-19)

In Earth coordinates, these terms are

a1i,j =
α∆t

(R∆x cos yj)2
(
− 1 +

1

2
φi−1,j

)
, a2i,j =

α∆t

(R∆x cos yj)2
(
− 1− 1

2
φi,j

)
,

a3i,j =
α∆t cos yj−1/2

(R∆y)2 cos yj

(
− 1 +

1

2
ψi,j−1

)
, a4i,j =

α∆t cos yj+1/2

(R∆y)2 cos yj

(
− 1− 1

2
ψi,j

)
,

a5i,j =
2∆t(
Dn+1

i,j

)2 +
α∆t

(R∆x cos yj)2

[(
1 +

1

2
φi−1,j

)
+

(
1− 1

2
φi,j

)]

+
α∆t

(R∆y)2 cos yj

[(
1 +

1

2
ψi,j−1

)
cos yj−1/2 +

(
1− 1

2
ψi,j

)
cos yj+1/2

]
,

bi,j = − ũ
n+1

i,j − ũ
n+1

i−1,j

R∆x cos yj
− ṽ

n+1

i,j cos yj+1/2 − ṽ
n+1

i,j−1 cos yj−1/2

R∆y cos yj
−
wn

s i,j + wn
b i,j − 2wn+1

b i,j

Dn+1
i,j

,

(3-20)

where wb is

wn+1
b i,j =−

uni−1/2,j

R∆x cos yj
×

hi,j − hi−1,j , uni−1/2,j ≥ 0,

hi+1,j − hi,j , uni−1/2,j < 0,

−
vni,j−1/2

R∆y
×

hi,j − hi,j−1, vni,j−1/2 ≥ 0,

hi,j+1 − hi,j , vni,j−1/2 < 0.

(3-21)

In both Cartesian and Earth coordinates, the variables φ and ψ are defined as
φi,j =

(
η − βh

)n+1

i+1,j
−
(
η − βh

)n+1

i,j

Dn+1
i+1/2,j

,

ψi,j =

(
η − βh

)n+1

i,j+1
−
(
η − βh

)n+1

i,j

Dn+1
i,j+1/2

.

(3-22)

The depth-averaged horizontal velocity in the above equations is simply the horizontal volume flux
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divided by the total water depth, that is
ũ
n+1

i,j =
M̃ n+1

i,j

Dn+1
i+1/2,j

, ṽ
n+1

i,j =
Ñ n+1

i,j

Dn+1
i,j+1/2

,

uni−1/2,j =
Mn

i−1,j +Mn
i,j

2Dn
i,j

, vni,j−1/2 =
Nn

i,j−1 +Nn
i,j

2Dn
i,j

.

(3-23)

The sparse linear system of non-hydrostatic pressure (3-17) is solved with the bi-conjugate

gradient squared stabilized (Bi-CGSTAB) method (van der Vorst , 1992), and the incomplete LU

(ILU) preconditioner (Barrett et al., 1994) is used for acceleration. The non-hydrostatic pressure at

the outermost cells of the computational domain is set to be zero as the boundary condition. After

solving the non-hydrostatic pressure q, the vertical velocity at the free surface ws is calculated from

(3-15), and the final dispersive volume flux (M,N) is obtained by substituting q into (3-13).

In Cartesian coordinates, the discretized value of the final dispersive volume fluxes are

Mn+1
i,j = M̃ n+1

i,j − α∆t

∆x
Dn+1

i+1/2,j

(
qi+1,j − qi,j

)
− α∆t

2∆x

(
qi,j + qi+1,j

) [(
η − βh

)n+1

i+1,j
−
(
η − βh

)n+1

i,j

]
,

Nn+1
i,j = Ñ n+1

i,j − α∆t

∆y
Dn+1

i,j+1/2

(
qi,j+1 − qi,j

)
− α∆t

2∆y

(
qi,j + qi,j+1

) [(
η − βh

)n+1

i,j+1
−
(
η − βh

)n+1

i,j

]
.

(3-24)

In Earth coordinates, they are given as

Mn+1
i,j = M̃ n+1

i,j − α∆t

R∆x cos yj
Dn+1

i+1/2,j

(
qi+1,j − qi,j

)
− α∆t

2R∆x cos yj

(
qi,j + qi+1,j

) [(
η − βh

)n+1

i+1,j
−
(
η − βh

)n+1

i,j

]
,

Nn+1
i,j = Ñ n+1

i,j − α∆t

R∆y
Dn+1

i,j+1/2

(
qi,j+1 − qi,j

)
− α∆t

2R∆y

(
qi,j + qi,j+1

) [(
η − βh

)n+1

i,j+1
−
(
η − βh

)n+1

i,j

]
.

(3-25)

It should be noted that the depth-integrated non-hydrostatic model is only applicable to mod-

erate bottom slope, which is the same as the Boussinesq equations. It has been demonstrated that

localized steep bottom gradients generally lead to instability of the Boussinesq-type models (Løvholt
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and Pedersen, 2009). Similarly, the solution to the linear system of non-hydrostatic pressure (3-17)

becomes unstable on small steep bathymetric features. For simulation of dispersive tsunamis, large

bottom slope should be avoided.

3.3 Moving Boundary Technique

In numerical computation of tsunami inundation, the real topography is represented with a series

of small steps located at the finite difference grids. At a submerged wet cell, the surface elevation η

is above the bottom and the total water depth D = η+h is positive. While at a dry cell, the surface

elevation is below the bottom and the value of η depends on the location of the cell. If the dry cell

is in the sea (h ≥ 0), η is set to be −h so that the total water depth D is zero. But if it is on the

land (h < 0), η is assigned to be zero and D is negative. In PCOMCOT, we adopt the algorithm of

Cho and Kim (2009) to constrain the flow direction on the wet-dry boundary according to the local

topography and the surface elevation. By doing so, the moving shoreline is captured naturally from

the continuity equation. This moving boundary algorithm can stably compute tsunami run-up and

run-down on topographic discontinuities without special treatment of the governing equations. For

simplicity, different cases in x directions involved in the wet and dry problem is presented in Figure

3.2, and the cases along y direction are handled in the same way. The various cases in terms of flow

direction in Figure 3.2 are described below in detail.

(a) If the higher cell is wet (Di+1 > 0) and the water surface at the lower cell is above the bottom

of the higher one (ηi + hi+1 > 0), then the water can flow in both directions and the flux Mi

is directly calculated from the momentum equation.

(b) If the higher cell is dry (Di+1 ≤ 0) and the water surface at the lower cell is above the bottom

of the higher one (ηi + hi+1 > 0), then the water can only flow from the lower cell to the

higher one. The value of Mi from the momentum equation is retained if its sign is consistent

with the allowed direction, and is set to be zero if not. −hi+1 is used as the value of ηi+1

when calculating Mi to avoid false surface gradient due to the setting of η value on dry cells.

(c) If the higher cell is wet (Di+1 > 0) and the water surface at the lower cell is below the bottom

of the higher one (ηi + hi+1 ≤ 0), then the water can only flow from the higher cell to the

lower one. The value of Mi is set to be zero if its sign from momentum equation is opposite
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to the allowed direction. −hi+1 is used as the value of ηi when calculating Mi, because the

water level at the lower cell would not influence the flow from above.

(d) If the higher cell is dry (Di+1 ≤ 0) and the water surface at the lower cell is below the bottom

of the higher one (ηi + hi+1 ≤ 0), then the water cannot flow between these two cells and Mi

becomes zero.

i 1i +

MWL
ih

ih

1ih +

1ih +
iM

i 1i +

MWL
ih

ih

1ih +

iM

i 1i +

MWL
ih

ih 1ih +

1ih +
iM

i 1i +

MWL
ih

ih 1ih +

(a) (b)

(c) (d)

Figure 3.2 1D wet-dry cases in x direction. MWL represents the mean water level, and the arrows
below the flux M denote the allowed directions of water flow.

The momentum equations together with the above constraints on flow direction determine the

volume flux on the wet-dry boundary. Once the continuity equation is solved at the next time step

based on the value of volume flux, the conversion between wet and dry is handled as following.

* If ηn + h ≤ 0 and ηn+1 > ηn, then water flows into the dry cell. Because there is no water in

the cell at the previous time step, the total water depth Dn+1 is actually ηn+1 − ηn. Thus,

the value of ηn+1 is modified to be ηn+1 − ηn − h to give the correct total water depth.

* If ηn + h > 0 and ηn+1 < ηn, then water flows out of the wet cell. If ηn+1 + h is less than a

threshold, this cell is drained, and ηn+1 is set to 0 when h < 0 or −h when h ≥ 0. Otherwise,
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the cell remains wet and ηn+1 from continuity equation is retained. Note that we turn a wet

cell into dry when the total water depth is less than a given positive value rather than zero,

to avoid the instability caused by a very thin water film when the tsunami recedes.

3.4 Wave Breaking

Since the momentum equations of depth-integrated non-hydrostatic model is only valid for non-

breaking waves, additional treatment is needed to handle wave breaking. In PCOMCOT, we use the

eddy-viscosity scheme of Kennedy et al. (2000) to model the energy dissipation caused by breaking.

This scheme adds artificial eddy viscosity terms to the right-hand side of the horizontal momentum

equations (2-22b, 2-22c) or (2-24b, 2-24c). These terms are expressed as
Rbx = ▽ · (ν▽M),

Rby = ▽ · (ν▽N),

(3-26)

where Rbx and Rby are the eddy viscosity terms for x and y directions, respectively. Compared with

the original form of Kennedy et al. (2000), The cross-derivatives are removed in (3-26) to improve

numerical stability (Choi et al., 2018). ν is the artificial eddy viscosity varying with time and space,

which is defined as

ν = Bδ2b (h+ η)ηt, (3-27)

where the mixing length coefficient δb is 1.0 in PCOMCOT. The coefficient B varies smoothly from

0 to 1 to avoid a sudden start of breaking and the related instability. Details about how the value

of B is evaluated can be found in the studies of Kennedy et al. (2000) and Chen et al. (2000). In

brief, B is a piecewise linear function of the ratio between ηt and a parameter η∗t which determines

the onset and cessation of breaking. A breaking event starts when ηt exceeds an initial threshold

η
(I)
t and terminates once ηt becomes less than η∗t . As breaking develops, the parameter η∗t decreases

gradually with the breaking event age from η
(I)
t to η

(F )
t . To estimate the age of each breaking event

in the computational region, the breaking history at a certain grid cell is tracked against the local

wave celerity.
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3.5 Nested Grid Configuration

A system of nested rectangular grids is employed in PCOMCOT to use various spatial resolutions

for different study regions. The largest grid layer covering the entire computational region is called

the 1st-level layer (top layer), and the layers directly nested in the 1st-level layer are 2nd-level

layers, and so on. For any two directly nested layers, the outer layer is called the parent layer and

the inner one the child layer. Any grid size ratio between the parent and child layers is allowed.

Both one-way and two-way nesting algorithms can be used for exchanging the information between

two nested layers. In one-way nesting, interpolation of the solution over the parent layer provides

the input boundary conditions for the child layer. While the two-way nesting involves an extra

procedure of feeding back the surface elevation from the child to the parent layer.

The feed-forward from the parent to child layer is illustrated in Figure 3.3. For the time step

size ∆t given to the top layer, the time step size of a certain layer is set to be ∆t/k, where k is

the smallest integer which gives a C.F.L. (Courant-Friedrichs-Lewy) number no larger than that

of the top layer. Beginning at time t, the parent layer is firstly computed with the time step size

∆t/k1 until t + ∆t. The surface elevation η, volume flux (M,N), non-hydrostatic pressure q and

artificial eddy viscosity ν at t + ∆t over the parent layer are interpolated to the grid cells on the

boundary of the child layer. Then, the child layer is calculated with the time step size ∆t/k2, and

at each step, the solution on the child layer boundary is predefined by assuming a linear change of

these variables from t to t+∆t. Note that for calculation of nonlinear terms, two rows/columns of

variables on the child layer boundary need to be interpolated from the parent layer. In Figure 3.3,

only one row/column is plotted for simplicity.
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… <latexit sha1_base64="hjtc3sxq1XYvklnnLDN8l+AkJcQ=">AAAB/nicbVDLSgMxFM3UV62vUXHlJliEilhniq9lURcuK9gHtMOQSTNtaOZBckcoQ8FfceNCEbd+hzv/xrSdhbYeuHByzr3k3uPFgiuwrG8jt7C4tLySXy2srW9sbpnbOw0VJZKyOo1EJFseUUzwkNWBg2CtWDISeII1vcHN2G8+Mql4FD7AMGZOQHoh9zkloCXX3IPj0sCtnNhHnVsmgGA41U/XLFplawI8T+yMFFGGmmt+dboRTQIWAhVEqbZtxeCkRAKngo0KnUSxmNAB6bG2piEJmHLSyfojfKiVLvYjqSsEPFF/T6QkUGoYeLozINBXs95Y/M9rJ+BfOSkP4wRYSKcf+YnAEOFxFrjLJaMghpoQKrneFdM+kYSCTqygQ7BnT54njUrZviif358Vq9dZHHm0jw5QCdnoElXRHaqhOqIoRc/oFb0ZT8aL8W58TFtzRjazi/7A+PwBXOmT1g==</latexit>

t + (k2 � 1)�t/k2

<latexit sha1_base64="EW8ffiQ66LdxFmxlWuP5stZol0g=">AAAB9XicbVDJSgNBEO1xjXGLevTSGARBiDPB7RjUg8cIZoFkDD2dmqRJz0J3jRKG/IcXD4p49V+8+Td2kjlo4oOCx3tVVNXzYik02va3tbC4tLyymlvLr29sbm0XdnbrOkoUhxqPZKSaHtMgRQg1FCihGStggSeh4Q2ux37jEZQWUXiPwxjcgPVC4QvO0EgPeNy+AYmM4smgU+4UinbJnoDOEycjRZKh2il8tbsRTwIIkUumdcuxY3RTplBwCaN8O9EQMz5gPWgZGrIAtJtOrh7RQ6N0qR8pUyHSifp7ImWB1sPAM50Bw76e9cbif14rQf/STUUYJwghny7yE0kxouMIaFco4CiHhjCuhLmV8j5TjKMJKm9CcGZfnif1csk5L53dnRYrV1kcObJPDsgRccgFqZBbUiU1wokiz+SVvFlP1ov1bn1MWxesbGaP/IH1+QM79ZG0</latexit>

t + �t/k2

Figure 3.3 Feed-forward from the parent to the child layer. The red box in the parent layer denotes
the boundary of the child layer. The red dots and arrows in the child layer represent η, q, ν and
(M,N) interpolated from the parent layer, while the black dots and arrows indicate those obtained
by solving the governing equations.

The feedback from the child to parent layer is sketched in Figure 3.4. If two-way nesting

is used, the surface elevation over the parent layer is updated with the average value from the

overlapping child layer grids when the computation in all layers reaches t+∆t. After the feedback

of surface elevation, the momentum equations are solved again in the parent layer to keep (M,N),

q, ν coupled with η.
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Figure 3.4 Feedback from the child to the parent layer. The red and black dots in the child layer
denote the surface elevation interpolated from the parent layer and calculated from the continuity
equation, respectively. In the parent layer, the magenta dots indicate the grid points where η is
updated with the average value from the child layer. After feedback of η, the related q, ν and
(M,N) which are colored blue are updated by solving the momentum equations again.

3.6 Parallelization

A domain decomposition method is used in PCOMCOT for parallel implementation of the numerical

model. As is shown in Figure 3.5, the simulation domain of each grid layer is partitioned into

multiple rectangular subdomains, each of which has almost the same number of grid cells along

x and y directions for load balance. These subdomains are assigned to different computation

nodes, and data exchanges between nodes are realized with the MPI point-point communication

routines. Both intra- and inter-layer communication are needed for parallel computation in the

nested grid system. The intra-layer communication is performed between subdomains of a single

layer, while the inter-layer communication exchanges information between the parent and child

layers in grid nesting. For solving the non-hydrostatic pressure, we design the parallel version of

the ILU-preconditioned Bi-CGSTAB algorithm specifically for PCOMCOT, so that the implicit

solver is seamlessly connected to our numerical model.
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Figure 3.5 Domain decomposition for parallel computation. The subdomains of each layer are
assigned to different nodes. The Numbers after # are the MPI ranks of these nodes, starting from
0. The total number of subdomains along x and y directions are npartx and nparty, respectively.

3.6.1 Intra-layer Communication

The data transferred by intra-layer communication is shown in Figure 3.6. For each subdomain,

data outside its boundary are needed to calculate the variables at the edges. So, at each time

step, two extra rows/columns of η, q, ν, M and N surrounding the subdomains are acquired from

the adjacent ones. For demonstration purpose, only one row/column is plotted in Figure 3.6. To

correctly synchronize the data at four corners of subdomains, data from the four neighbors must

be sent and received in order. For each subdomain, variables are firstly transferred from the left

and right neighbors, and then the top and bottom ones.
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Figure 3.6 Intra-layer communication. The boundaries of different subdomains are denoted by
thick black lines. The dots and arrows represent the variables η, q, ν, M and N sent to node #i at
each time step. The blue rounded boxes together with the large hollow arrows indicate from which
nodes these variables are sent, with the circled numbers showing the order of data transfer.

3.6.2 Inter-layer Communication

A sketch of inter-layer communication is given by Figure 3.7. Suppose that a grid cell on the child

layer boundary is assigned to node #0, but its location in the parent layer belongs to node #5. So,

in the feed-forward from the parent to child layer, values of η, q, ν, M and N at the location of this

child layer grid are firstly interpolated on node #5 using the parent layer data, and then sent to

node #0. While in the feedback from the child to parent layer, the same procedure is done except

that only η is averaged and then sent.
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Figure 3.7 Inter-layer communication. Boundaries of different subdomains in the parent and child
layers are denoted with thick black and blue lines, respectively. In the child layer, the solid blue
dots indicate the boundary cells where variable values are interpolated from the parent layer in
feed-forward, and the hollow ones are the cells where the surface elevation is averaged for feedback.

3.6.3 Parallelization of Implicit Solver

We use the ILU-preconditioned Bi-CGSTAB algorithm (Barrett et al., 1994; van der Vorst , 1992) to

solve non-hydrostatic pressure from the linear system (3-17). Bi-CGSTAB is a fast iterative method

for solving non-symmetric linear systems. The ILU preconditioning is a technique for significantly

speeding up the convergence of iterative methods. In each iteration, extra preconditioning matrices,

which are upper or lower triangular matrices containing similar coefficients to (3-17), are solved

firstly before implementing the Bi-CGSTAB method.

For parallelizing the algorithm, all the involved vectors are distributed into the aforementioned

subdomains. In every iteration, vectors are synchronized in the same way as intra-layer communi-

cation, and the scalars on all nodes are updated through MPI collective communication. To enable

parallel solving of the lower and upper triangular matrices, any coefficient in (3-17) referring to q on
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another node is omitted when constructing the preconditioning matrices. For example, if qi,j and

qi−1,j are stored on different nodes, the coefficient a1i,j is assumed to be zero. Compared with the

original form of ILU-preconditioning, this modification slightly increases the number of iterations,

but still reduces the number of iterations effectively.

The implicit solver specifically written for PCOMCOT is tested against Matlab function

bicgstab which solves sparse linear systems with Bi-CGSTAB (Copyright 1984-2022 The Math-

Works, Inc.). As shown in Figure 3.8, with the tolerance (i.e., the ratio between norms of residual

error and the forcing vector) set to be 10−6, difference between the non-hydrostatic pressure given

by our parallel preconditioned solver and the Matlab sequential upreconditioned version is less than

5× 10−7. The number of iterations in this example is 6 for PCOMCOT running on 40 CPU cores,

and 17 for MATLAB function bicgstab.
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Figure 3.8 Comparison of non-hydrostatic pressure given by the implicit solver specifically written
for PCOMCOT and the Matlab function bicgstab.

3.7 Boundary Conditions

Two types of boundary conditions – wall boundary and absorbing boundary are provided in PCOM-

COT. For absorbing boundary condition, a combination of the sponge layer technique proposed by

Larsen and Dancy (L-D type, 1983) and the friction-type sponge layer is adopted for damping the

wave both effectively and smoothly. The L-D type sponge layer directly attenuates the variables

near the boundary of computational region at every time step, i.e.,

(η,M,N) = (η,M,N)/Cs. (3-28)
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The damping coefficient Cs is defined as

Cs = Aγi−1

, i = 1, 2, ..., Iwidth, (3-29)

in which A and γ are free parameters which are suggested by Chen et al. (1999) to be 2.0 and

0.88∼0.92, respectively. i is the grid number along the direction away from the boundary, and

Iwidth is the layer width in number of points. A narrow layer (i.e., width ≈ the typical wavelength)

can be used for L-D type sponge for its good efficiency. However, Shi et al. (2016) pointed out that

this type of sponge layer generates sawtooth noises which may grow to be significant in long-term

simulation. To minimize the noises and make the damping more effective, the friction-type sponge

is also implemented in the same area of the L-D type. The friction-type sponge uses the friction

terms existing in the momentum equations, and thus absorbs the waves smoothly. In the sponge

layer, an extra Manning’s roughness coefficient ns which increases gradually toward the boundary

is added to the original value. The form given by Shi et al. (2016) is adopted as the expression of

ns, that is

ns = nmax

(
1− tanh

10(i− 1)

Iwidth − 1

)
, (3-30)

where nmax is the maximum value of Manning’s coefficient used in the sponge layer. The combi-

nation of L-D and friction-type sponge layers produces satisfactory absorption in our test, without

introducing oscillations to the interior of computation domains.

3.8 Dealing with Numerical Instability

The numerical model of PCOMCOT shows good stability in large-scale and long-term simulations.

However, numerical instability cannot be avoided completely by any scheme. Here we give some

suggestions for dealing with numerical instabilities.

1. Use the flux-centered scheme for LSWEs or add nonlinear terms.

As mentioned in Section 3.1, the FTCS scheme many models use to solve LSWEs may cause

unphysical oscillations near shorelines, due to absence of numerical diffusion in the truncated

error. The flux-centered scheme for LSWEs and the upwind scheme for nonlinear terms can

reduce spurious oscillations by introducing slight numerical diffusion. If instability occurs

when solving LSWEs, we suggest the user employ the flux-centered scheme or change the

governing equations into nonlinear equations (even if wave nonlinearity is negligible). Note
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that in some cases where there is steep surface profile in shallow water, the flux-centered

scheme may oversmooth the waves. In such cases, adding nonlinear term is a more appropriate

method to introduce numerical diffusion.

2. Avoid steep bathymetry.

The non-hydrostatic model becomes unstable on rapidly varying bathymetry. The instability

related with steep bathymetry usually appears as spurious wave sources near the coast. Large

gradient of water depth should be avoided when computing dispersive waves. Based on our

experiences, a bottom slope less than 0.5 (i.e., |▽h| < 0.5) generally gives stable results. The

grdfilter module of GMT (Generic Mapping Tools) software (Wessel et al., 2013) can be used

to remove localized steep features. By setting the -F option to be -Fgwidth, we can apply

a Gaussian filter to the input bathymetry grids, where the parameter width is the width of

the Gaussian function (i.e., 6 times the standard deviation) in km. According to the stability

criterion of Horrillo et al. (2006), the parameter width should be ∼4.5 times the average water

depth.

3. Limit huge velocity with a Froude number cap.

In tsunami simulations, unrealistic velocity may occur in extremely shallow water and some-

times lead to instability. A Froude number cap is used in PCOMCOT to address this problem.

In our tests, the Froude number cap is set to be 10.0, and no instability is found. A smaller

value can be used to ensure model stability. Note that when calculating inundation, a Froude

number cap less than 1.5 is undesirable, because it caps the velocity on the flooding water

fronts (Shi et al., 2016).

4. Adjust Water depth Limit for wet −> dry.

The parameter Water depth Limit for wet −> dry controls the threshold value of water depth,

below which the grid cell is thought to be dry. The parameter is suggested to be 0.01m for

real tsunamis and 0.001m for small-scale lab scenarios. As a thin water film may cause large

velocity during the run-down process, users can set larger values for this parameter when

instability occurs.

Although no numerical filtering is needed in our tests, we still provide a 2D 9-point numerical

filter in case there are other instabilities. The first-order filter of Shapiro (1970) can be applied to
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(η,M,N) every after a given time interval. The numerical filtering can significantly damp the wave

field after being used a few times, so it is not suggested generally.
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4 Configuration, Input and Output

4.1 Programming Flow

The code of PCOMCOT is written using Fortran 90 and is parallelized with MPI routines. The

computation node with MPI rank 0 is used as the master node, while the others are slave nodes. The

input data are read on the master node and then broadcast to slave nodes. Numerical simulation

is performed simultaneously on all nodes. For data output, simulation results on slave nodes are

sent to the master node, where the output files are generated. The detailed programming flow of

PCOMCOT is displayed in Figure 4.1.

MPI Initialize

Read input files Determine nesting relationship of gird layers Divide domains & calculate communication tables

Broadcast general parameters and bathymetry data to slave nodes Calculate parameters for simulation

preprocessing

get layer boundary
<latexit sha1_base64="j2dwyCvjchf8ZO68qGcH7uvdp4A=">AAAB9XicbVDLSsNAFJ3UV62vqktFgkVwEUoi+FgW3bhRWrAPaGKZTG/boZNJnJkoJXTpP7hxoYhbt/0Od36DP+H0sdDWAxcO59zLvff4EaNS2faXkZqbX1hcSi9nVlbX1jeym1sVGcaCQJmELBQ1H0tglENZUcWgFgnAgc+g6ncvhn71HoSkIb9RvQi8ALc5bVGClZZuXVDYurNcHltX1nUjm7Pz9gjmLHEmJFfYHZS+H/cGxUb2022GJA6AK8KwlHXHjpSXYKEoYdDPuLGECJMubkNdU44DkF4yurpvHmilabZCoYsrc6T+nkhwIGUv8HVngFVHTntD8T+vHqvWmZdQHsUKOBkvasXMVKE5jMBsUgFEsZ4mmAiqbzVJBwtMlA4qo0Nwpl+eJZWjvHOSPy7pNM7RGGm0g/bRIXLQKSqgS1REZUSQQE/oBb0aD8az8Wa8j1tTxmRmG/2B8fEDDPWVSA==</latexit>

⌘, q, ⌫, M, N at coarse time form parent layer

get layer boundary
<latexit sha1_base64="j2dwyCvjchf8ZO68qGcH7uvdp4A=">AAAB9XicbVDLSsNAFJ3UV62vqktFgkVwEUoi+FgW3bhRWrAPaGKZTG/boZNJnJkoJXTpP7hxoYhbt/0Od36DP+H0sdDWAxcO59zLvff4EaNS2faXkZqbX1hcSi9nVlbX1jeym1sVGcaCQJmELBQ1H0tglENZUcWgFgnAgc+g6ncvhn71HoSkIb9RvQi8ALc5bVGClZZuXVDYurNcHltX1nUjm7Pz9gjmLHEmJFfYHZS+H/cGxUb2022GJA6AK8KwlHXHjpSXYKEoYdDPuLGECJMubkNdU44DkF4yurpvHmilabZCoYsrc6T+nkhwIGUv8HVngFVHTntD8T+vHqvWmZdQHsUKOBkvasXMVKE5jMBsUgFEsZ4mmAiqbzVJBwtMlA4qo0Nwpl+eJZWjvHOSPy7pNM7RGGm0g/bRIXLQKSqgS1REZUSQQE/oBb0aD8az8Wa8j1tTxmRmG/2B8fEDDPWVSA==</latexit>

⌘, q, ⌫, M, N at fine time

Calculate <latexit sha1_base64="zJHtEtyWQYBKP7fg+xaIal7Wx3k=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4CruCj2PQi8cEzAOSJcxOZpMhM7PLzKwQlhy9evGgiFf/Id/hzW/wJ5xNctDEgoaiqpvuriDmTBvX/XKWlldW19ZzG/nNre2d3cLefl1HiSK0RiIeqWaANeVM0pphhtNmrCgWAaeNYHCb+Y0HqjSL5L0ZxtQXuCdZyAg2mdSmBncKRbfkToAWiTcjxfLRuPr9eDyudAqf7W5EEkGlIRxr3fLc2PgpVoYRTkf5dqJpjMkA92jLUokF1X46uXWETq3SRWGkbEmDJurviRQLrYcisJ0Cm76e9zLxP6+VmPDaT5mME0MlmS4KE45MhLLHUZcpSgwfWoKJYvZWRPpYYWJsPHkbgjf/8iKpn5e8y9JF1aZxA1Pk4BBO4Aw8uIIy3EEFakCgD0/wAq+OcJ6dN+d92rrkzGYO4A+cjx/5EpHp</latexit>⌘ Calculate non-dispersive, non-breaking
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)Exchange at subdomain edges<latexit sha1_base64="zJHtEtyWQYBKP7fg+xaIal7Wx3k=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4CruCj2PQi8cEzAOSJcxOZpMhM7PLzKwQlhy9evGgiFf/Id/hzW/wJ5xNctDEgoaiqpvuriDmTBvX/XKWlldW19ZzG/nNre2d3cLefl1HiSK0RiIeqWaANeVM0pphhtNmrCgWAaeNYHCb+Y0HqjSL5L0ZxtQXuCdZyAg2mdSmBncKRbfkToAWiTcjxfLRuPr9eDyudAqf7W5EEkGlIRxr3fLc2PgpVoYRTkf5dqJpjMkA92jLUokF1X46uXWETq3SRWGkbEmDJurviRQLrYcisJ0Cm76e9zLxP6+VmPDaT5mME0MlmS4KE45MhLLHUZcpSgwfWoKJYvZWRPpYYWJsPHkbgjf/8iKpn5e8y9JF1aZxA1Pk4BBO4Aw8uIIy3EEFakCgD0/wAq+OcJ6dN+d92rrkzGYO4A+cjx/5EpHp</latexit>⌘ Exchange at subdomain edges
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)

Construct implicit equations of q Update q Exchange q at subdomain edges

Calculate dispersive with q
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N) Exchange at subdomain edges
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)

Calculate breaking with 
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)
<latexit sha1_base64="TjbkfnZS+qf8pJ+YJeSrWE7vk+8=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVmBC8bsejGZUV7gXYomTTThmaSIckIZegjuHGhiEt9F/duxLcxvSy09YfAx/+fQ845YcKZNp737eQWFpeWV/Kr7tr6xuZWYXunpmWqCK0SyaVqhFhTzgStGmY4bSSK4jjktB72r0Z5/Z4qzaS4M4OEBjHuChYxgo21blsibReKXskbC82DP4XixYd7nrx9uZV24bPVkSSNqTCEY62bvpeYIMPKMMLp0G2lmiaY9HGXNi0KHFMdZONRh+jAOh0USWWfMGjs/u7IcKz1IA5tZYxNT89mI/O/rJma6CzImEhSQwWZfBSlHBmJRnujDlOUGD6wgIlidlZEelhhYux1XHsEf3bleagdlfyT0vGNVyxfwkR52IN9OAQfTqEM11CBKhDowgM8wbPDnUfnxXmdlOacac8u/JHz/gPBqpEe</latexit>⌫

Calculate <latexit sha1_base64="TjbkfnZS+qf8pJ+YJeSrWE7vk+8=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVmBC8bsejGZUV7gXYomTTThmaSIckIZegjuHGhiEt9F/duxLcxvSy09YfAx/+fQ845YcKZNp737eQWFpeWV/Kr7tr6xuZWYXunpmWqCK0SyaVqhFhTzgStGmY4bSSK4jjktB72r0Z5/Z4qzaS4M4OEBjHuChYxgo21blsibReKXskbC82DP4XixYd7nrx9uZV24bPVkSSNqTCEY62bvpeYIMPKMMLp0G2lmiaY9HGXNi0KHFMdZONRh+jAOh0USWWfMGjs/u7IcKz1IA5tZYxNT89mI/O/rJma6CzImEhSQwWZfBSlHBmJRnujDlOUGD6wgIlidlZEelhhYux1XHsEf3bleagdlfyT0vGNVyxfwkR52IN9OAQfTqEM11CBKhDowgM8wbPDnUfnxXmdlOacac8u/JHz/gPBqpEe</latexit>⌫ Exchange <latexit sha1_base64="TjbkfnZS+qf8pJ+YJeSrWE7vk+8=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVmBC8bsejGZUV7gXYomTTThmaSIckIZegjuHGhiEt9F/duxLcxvSy09YfAx/+fQ845YcKZNp737eQWFpeWV/Kr7tr6xuZWYXunpmWqCK0SyaVqhFhTzgStGmY4bSSK4jjktB72r0Z5/Z4qzaS4M4OEBjHuChYxgo21blsibReKXskbC82DP4XixYd7nrx9uZV24bPVkSSNqTCEY62bvpeYIMPKMMLp0G2lmiaY9HGXNi0KHFMdZONRh+jAOh0USWWfMGjs/u7IcKz1IA5tZYxNT89mI/O/rJma6CzImEhSQwWZfBSlHBmJRnujDlOUGD6wgIlidlZEelhhYux1XHsEf3bleagdlfyT0vGNVyxfwkR52IN9OAQfTqEM11CBKhDowgM8wbPDnUfnxXmdlOacac8u/JHz/gPBqpEe</latexit>⌫ at subdomain edges

Exchange at subdomain edges
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)

update by averaing child layer result
<latexit sha1_base64="zJHtEtyWQYBKP7fg+xaIal7Wx3k=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4CruCj2PQi8cEzAOSJcxOZpMhM7PLzKwQlhy9evGgiFf/Id/hzW/wJ5xNctDEgoaiqpvuriDmTBvX/XKWlldW19ZzG/nNre2d3cLefl1HiSK0RiIeqWaANeVM0pphhtNmrCgWAaeNYHCb+Y0HqjSL5L0ZxtQXuCdZyAg2mdSmBncKRbfkToAWiTcjxfLRuPr9eDyudAqf7W5EEkGlIRxr3fLc2PgpVoYRTkf5dqJpjMkA92jLUokF1X46uXWETq3SRWGkbEmDJurviRQLrYcisJ0Cm76e9zLxP6+VmPDaT5mME0MlmS4KE45MhLLHUZcpSgwfWoKJYvZWRPpYYWJsPHkbgjf/8iKpn5e8y9JF1aZxA1Pk4BBO4Aw8uIIy3EEFakCgD0/wAq+OcJ6dN+d92rrkzGYO4A+cjx/5EpHp</latexit>⌘

loop 
for 

coarse 
time

loop 
for 

layers

loop 
for 
fine 
time

Calculate again
<latexit sha1_base64="Xc5ywixS5sySCdonE/WUgtWaWMs=">AAAB7HicbVDLSsNAFL2pr1pfVZduhhahopRE8LEsunGjVDBtoQ1lMp20QyeTMDMRQug3uOlCEbd+kLv+jdPHQqsHLhzOuZd77/FjzpS27YmVW1ldW9/Ibxa2tnd294r7Bw0VJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vB26jefqVQsEk86jakX4r5gASNYG8mt3J89nHSLZbtqz4D+EmdByrVS53Q8qaX1bvGr04tIElKhCcdKtR071l6GpWaE01GhkygaYzLEfdo2VOCQKi+bHTtCx0bpoSCSpoRGM/XnRIZDpdLQN50h1gO17E3F/7x2ooNrL2MiTjQVZL4oSDjSEZp+jnpMUqJ5aggmkplbERlgiYk2+RRMCM7yy39J47zqXFYvHk0aNzBHHo6gBBVw4ApqcAd1cIEAgxd4hTdLWGPr3fqYt+asxcwh/IL1+Q2MiZDZ</latexit>

(M, N)

reverse 
loop for 
layers

MPI Finalize

output when needed
<latexit sha1_base64="5y/8mnHbt3QIPxh1dwsYcKb4hDE=">AAAB8nicbVDJSgNBEO2JW4xb1KMijUHwEMKM4HIMevGiJGAWmAyhp9OTNOmZHrtrhBBy9BO8eFDEqx+Q7/DmN/gTdpaDJj4oeLxXRVU9PxZcg21/WamFxaXllfRqZm19Y3Mru71T1TJRlFWoFFLVfaKZ4BGrAAfB6rFiJPQFq/ndq5Ffe2BKcxndQS9mXkjaEQ84JWAkt8GA5PF9/iZ/28zm7II9Bp4nzpTkivvD8vfjwbDUzH42WpImIYuACqK169gxeH2igFPBBplGollMaJe0mWtoREKmvf745AE+MkoLB1KZigCP1d8TfRJq3Qt90xkS6OhZbyT+57kJBBden0dxAiyik0VBIjBIPPoft7hiFETPEEIVN7di2iGKUDApZUwIzuzL86R6UnDOCqdlk8YlmiCN9tAhOkYOOkdFdI1KqIIokugJvaBXC6xn6816n7SmrOnMLvoD6+MHmm6T3w==</latexit>

⌘, q, M,N

Bi-CGSTAB iteration

if meet convergence criterion

Figure 4.1 Programming flow of PCOMCOT. The red boxes indicate the steps that are done only
on the master node. The magenta and green boxes denote the procedures exclusive to child and
parent layers, respectively.

4.2 Compiling Source Files

All the source files of PCOMCOT and their content are listed in Table 4.1.
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Table 4.1 Source Files of PCOMCOT

File Name Description

pcomcot.f90 main program of PCOMCOT

pcomcotLIB.f90 all subroutines except solving governing equations

MPICommunicationLIB.f90 subroutines for MPI communication

pcomcotNetCDFlib.f90 subroutines reading netCDF files

pcomcotNetCDFlibEmpty.f90 empty subs for compiling without netCDF library

solvEQNs.f90 subroutines solving linear shallow water equations

nonlinearFlux.f90 subroutines solving nonlinear shallow water equations

dispersion.f90 subroutines calculating dispersive terms

breaker.f90 subroutines calculating wave breaking

BiCGStabLIB.f90 preconditioned Bi-CGSTAB for solving non-hydrostatic pressure

VariableDefination.f90 definition of structures used in PCOMCOT

okada.f Okada’s formula for calculating seabed displacement

We have compiled and tested PCOMCOT in Linux and macOS systems. To compile the

source files, gfortran – the GNU Fortran compiler and OpenMPI – a widely used message passing

interface library must be installed. Besides, netcdf-fortran, the netCDF programming interface

for Fortran is optional for compilation, which enables PCOMCOT to read input files in netCDF

format. In Linux system, all the libraries and software mentioned above can be installed easily with

the package manager APT. For example, you can get everything ready by executing the following

commands in the terminal one by one:

$ sudo apt install gcc g++ gfortran

$ sudo apt install openmpi-bin openmpi-doc libopenmpi-dev

$ sudo apt install libnetcdf-dev libnetcdff-dev

In macOS, it is recommended to install them via a package management tool like Homebrew or

Macports.

We provide a makefile together with the source files. Depending on whether or not the

netcdf-fortran library is available, You can compile PCOMCOT with a simple “make” or “make

nocdf” command, respectively. In the makefile, the -I flag specifies the location of the file named
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“netcdf.mod”, which is created when the netCDF module is installed. And the -L flag indicates the

path of netCDF Fortran library for linking if it is installed as a shared library. The paths following

-I and -L flags may vary with the user’s environments. In Linux, if everything is installed with

APT, the flags are probably -I/usr/include and -L/usr/lib by default.

4.3 Input

There are eight input files in total for PCOMCOT, some of which are required, and some are

optional. All the input files are listed in Table 4.2, along with their descriptions. These input

files can be classified into three types according to their usage — control files, bathymetry files

and initial condition files. More detailed instructions on how to prepare these files are given in the

following subsections.

Table 4.2 Input Files for PCOMCOT

Input File Name Description

pcomcot.ctl basic information for simulation; required

layers.ctl layer-specific parameters; optional

layerXX.xyz/nf bathymetry data files; required

InitialElevation.xyz/nf initial surface elevation; required when Initial Condition=0

InitialFluxM.xyz initial volume flux in x direction; optional when Initial Condition=0

InitialFluxN.xyz initial volume flux in y direction; optional when Initial Condition=0

FaultParameters.ctl finite fault parameters; required when Initial Condition=1 or Purpose

of Calculation=2

Stations.ctl coordinates of output stations; required

The control files including “pcomcot.ctl”, “layers.ctl” and “Stations.ctl” are used to set the

parameters for governing equations, numerical schemes, and the input/output data. “pcomcot.ctl”

is the most basic control file which provides necessary information for PCOMCOT simulation.

“layers.ctl” prescribes the simulation parameters specific to each grid layer, and its parameters
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are just part of those in “pcomcot.ctl”. If “layers.ctl” is not given by the user, the values in

“pcomcot.ctl” will be used as the global values for all layers. “Stations.ctl” is required to give the

locations of stations where time histories of variables are output.

The bathymetry files “layerXX.xyz/nf” store the gridded data of water depth, each of which

corresponds to a single layer in the nesting system. Users can provide bathymetry files in both

netCDF format with the extension “.nf” or in three-column ASCII format with the extension

“.xyz”.

The initial condition files “InitialElevation.xyz/nf”, “InitialFluxM.xyz”, “InitialFluxN.xyz”,

and “FaultParameters.ctl” provide the initial condition of computation. For simulating the propaga-

tion of water surface disturbance or general water waves, “InitialElevation.xyz/nf”, “InitialFluxM.xyz”

and “InitialFluxN.xyz” give the initial values of surface elevation and horizontal volume fluxes. For

simulating earthquake tsunamis, “FaultParameters.ctl” provides the information of finite faults as

the tsunami source.

4.3.1 Parameters in pcomcot.ctl

The control file “pcomcot.ctl” is required to provide necessary information for PCOMCOT model.

Following are descriptions of parameters in “pcomcot.ctl”.

Basic Control Parameters

Purpose of Calculation: 1 – forward simulation of tsunami waves; 2 – calculate Green’s functions

of finite faults; 3 – calculate Green’s functions of initial surface elevation.

Initial Condition: 0 – initial water surface elevation (required) and volume flux (optional) are given

as initial condition, to simulate transient wave propagation; 1 – finite fault parameters are

given as initial condition, to simulate earthquake tsunamis.

Coordinate System: 0 – spherical coordinates on Earth surface; 1 – Cartesian coordinates.

Total run time: total simulation time in seconds.

Time step: time step size in seconds for the top grid layer. Time step sizes for the other grid layers

are determined automatically.
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Time interval to Save Snapshots: time interval in seconds to save snapshots of surface elevation

and volume flux during simulation.

Save Flux: 1 – output snapshots and time histories of both surface elevation η and volume flux

(M,N); 0 – only η is output.

Save Non-hydrostatic Pressure: 1 – output snapshots and time histories of non-hydrostatic pressure

at the bottom; 0 – non-hydrostatic pressure is not output. Note that the non-hydrostatic

pressure can be output only when wave dispersion is computed.

Minimum grids on each computing node: minimum number of grid points assigned to each com-

puting node in parallel implementation.

Feedback to parent layer: options for different grid nesting algorithms. 0 – one-way nesting from

parent to child layers; 1 – two-way nesting including feedback from child to parent layers.

Note that we have not tested the two-way nesting yet.

Parameters for Surface Deformation

Consider Horizontal Motion: 1 – when calculating sea surface deformation caused by earthquakes,

consider the contribution of horizontal motion to seafloor uplift using the equation of Tanioka

and Satake (1996); 0 – do not consider horizontal motion.

Apply Kajiura filter: 1 – apply Kajiura filter (Glimsdal et al., 2013; Kajiura, 1963) to the initial

surface deformation, which accounts for the low-pass filtering effect of sea water; 0 – do not

apply Kajiura filter.

Use average depth for Kajiura: 1 – use the average water depth of the source region when applying

Kajiura filter; 0 – use the varying local depth. We suggest setting this parameter to be 1,

because using varying local depth may lead to oversmoothing near the trench.

Water depth Limit for Kajiura: the minimum water depth in meters for applying Kajiura filter.

The low-pass filtering effect of sea water should be ignored in shallow water.

Parameters for Wave Physics and Numerics

Nonlinearity: parameter for wave nonlinearity. 0 – no wave nonlinearity; 1 – inclusion of nonlinear

convection terms.
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Dispersion: parameter for wave dispersion. 0 – no wave dispersion; 1 – inclusion of dispersive terms.

Depth change for Dispersion: parameter for the steepness of bathymetry. 0 – smooth bottom; 1

– relatively steep bottom. For smooth bottom, the new governing equations (2-21) with

α = 2/3, β = 0.5 is used. While for steep bottom, the previous model with α = 0.5, β = 1.0

(Stelling and Zijlema, 2003; Yamazaki et al., 2009; Zijlema and Stelling , 2008) is adopted.

For more accurate modeling of dispersive effects, we recommend setting this parameter to be

0 for tsunami propagation in deep ocean, and 1 for near-shore transformations. In practice,

different choices of this parameter would not cause significant difference in the leading and

first trailing waves.

Water depth Limit for Dispersion: minimum water depth in meters for calculating wave dispersion.

Dispersive effects are ignored in very shallow water for both efficiency and stability.

Breaking: parameter for wave breaking; 0 – no wave breaking; 1 – inclusion of wave breaking using

eddy-viscosity scheme.

Scheme for LSWEs: options for the numerical scheme to solve the shallow water equations. 0 –

traditional forward time-centered space (FTCS) scheme without numerical diffusion; 1 – flux-

centered scheme with slight extra numerical diffusion. Note that the flux-centered scheme is

generally more stable, but may oversmooth the steep wave profiles in shallow water.

Froude number Cap to Limit velocity: the maximum value of Froude number to avoid unrealistic

velocity. A Froude number cap = 10.0 is used in our tests. Smaller value can be used, but

for inundation calculation, a Froude number cap less than 1.5 is not suggested.

Time interval to apply Filter: time interval in seconds to apply a 2D 9-point filter to remove 2-

grid-wavelength components. No numerical filtering is needed in our tests, and this filter is

provided in case there are other instabilities. Turn off the filter by setting this parameter to

be longer than the total simulation time.

Parameters for Boundary Condition

Boundary Condition: parameter for boundary condition type; 1 – wall; 2 – sponge.

Width of Sponge (West-East): width of sponge layer (m) on the west and east boundaries.
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Width of Sponge (South-North): width of sponge layer (m) on the south and north boundaries.

Maximum Manning coefficient in Sponge: maximumManning’s roughness coefficient in sponge layer.

Damping coefficient A: the free parameter A in equation (3-29) for L-D type sponge, its value is

∼2.0.

Damping coefficient R: the free parameter γ in equation (3-29) for L-D type sponge, its value is

0.88∼0.92.

Parameters for Inundation

Permanent dry limit: maximum elevation (m) above which the grid cell is treated as permanently

dry and excluded from calculation.

Water depth Limit for wet −> dry: the minimum water depth (m) for the wetting and drying

scheme. 0.01 is suggested for real tsunamis, and larger value can be used to ensure stability.

Water depth limit for Bottom friction: minimum depth (m) for calculating bottom friction. 0.05 is

suggested for real tsunamis.

Manning coefficient for Bottom friction: Manning roughness coefficient in Manning’s formula. Its

value is ∼0.03 in most cases.

Parameters for Computing Green’s Functions (only when Purpose of Calculation = 3)

Source Area Starting Longitude: west longitude (degree) of tsunami source region.

Source Area Ending Longitude: east longitude (degree) of tsunami source region.

Source Area Discretizatoin Grid Size X: size (m) of sub-source region in west-east direction.

Source Area Starting Latitude: south latitude (degree) of tsunami source region.

Source Area Ending Latitude: north latitude (degree) of tsunami source region.

Source Area Discretizatoin Grid Size Y: size (m) of sub-source region in south-north direction.

Basis Function Type: type of point source function. 1 – Gaussian function; 2 – Sigmoid function.
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Ratio of Gaussian Raidus / Grid Size: ratio of Gaussian function radius to the sub-source region

size. This parameter determines the width of the point source.

Sigmoid Coefficient: coefficient defining the steepness of Sigmoid function.

4.3.2 Parameters in layers.ctl

The file “layers.ctl” is not required but optional. With this input file, PCOMCOT is more flexible

for the balance between accuracy and time-efficiency. In “layers.ctl”, the name of each layer is a two-

digital integer consistent with the corresponding bathymetry file. The 6 layer-specific parameters

in “layers.ctl” are shown in Figure 4.2. By setting these parameters, we can adopt different wave

models for different grid layers. For example, we can simulate linear dispersive waves in the large

outer layers, where wave dispersion may be significant in long-distance propagation, and switch to

nonlinear shallow water model in the small inner layers in coastal area. Besides, we can prescribe

that a particular layer does not start computing until the tsunami waves approach its boundary

from outside by setting the value of Computing Start Time. Note that not all layers must appear

in “layers.ctl”. If a layer is absent from “layers.ctl”, its parameters are taken to be same as those

in “pcomcot.ctl”.

Figure 4.2 Parameters in layers.ctl
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4.3.3 Format of Bathymetry Files

The input bathymetry data files must be named as “layerXX.nf” or “layerXX.xyz”, where “XX”

is a two digital number from 01 to 99 and does not have to be continuous if there are multiple

bathymetry files. Each bathymetry file corresponds to a single grid layer in the nesting system.

All files must have the format of NetCDF (binary, ending with “.nf”) or “xyz” (ASCII, ending

with “.xyz”). “nf” files can be obtained from commonly used bathymetry data sets provided by

different organizations (e.g., GEBCO2020) with GMT commands (e.g., “grdcut” and “grdsample”);

An “xyz” file contains three columns, with the first column indicating x coordinates, the second y

coordinates and the last one the local water depth in meters. x and y coordinates should be given

in meters for Cartesian coordinates and in degrees for Earth coordinates. Data in “xyz” files must

be sorted by x ascending and then y ascending order, e.g.:

(Line 1:) 138.000000000 33.000000000 4033.7974

(Line 2:) 138.016666667 33.000000000 4016.6523

(Line 3:) 138.033333333 33.000000000 4005.2083

(Lines..) ...

(Line 842:) 138.000000000 33.016666667 4054.6309

(Lines..) ...

We can simply convert “nf” files into “xyz” files using the GMT command

$ gmt grd2xyz layerXX.nf | awk ’{print $1,$2,-$3}’ | sort -n -s -k 2 > layerXX.xyz

Note that “xyz” files should have positive water depth, while “nf” files should have negative water

depth. For the setting of nested grids, there are two general rules. First, only one top layer is

allowed; Second, one layer can contain others but cannot overlap another one without containing.

There are no constraints on the location and grid size of any layer, but child layers with larger grid

sizes than parent layers have not been tested.

4.3.4 Format of Initial Elevation and Flux Files

If the parameter Initial Condition is set to be 0 in “pcomcot.ctl”, an initial elevation file named “Ini-

tialElevation.nf” or “InitialElevation.xyz” must be provided. “InitialElevation.nf/xyz” must have
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the same format as described above, with exactly the same x and y coordinates as the bathymetry

file of the top layer. Two extra input files “InitialFluxM.xyz” and “InitialFluxN.xyz” can also

be used to provide the initial volume fluxes in x and y directions, respectively. The formats of

“InitialFluxM.xyz” and “InitialFluxN.xyz” are the same as “InitialElevation.xyz”, but the x and y

coordinates are different. Pay attention that, because of the staggered grids used in PCOMCOT, η,

M and N are defined on different locations. Suppose that the total number of grid cells in a certain

layer are NX and NY along x and y directions, respectively. Then the dimensions of η, M and N

are NX×NY, (NX−1)×NY and NX× (NY−1), respectively. Therefore, “InitialFluxM.xyz” must

have the same y coordinates as the bathymetry file, but have only (NX−1) x coordinates which are

larger than the corresponding ones in the bathymetry file by ∆x/2. Similarly, “InitialFluxN.xyz”

must have the same x coordinates as the bathymetry file of the top layer, but have only (NY − 1)

y coordinates which are larger than the corresponding ones in the bathymetry file by ∆y/2.

4.3.5 Finite Fault Parameters in FaultParameters.ctl

If the parameter Initial Condition is set to be 1 or Purpose of Calculation is set to be 2 in “pcom-

cot.ctl”, then the fault slip of an earthquake is used as the tsunami source, and finite fault parameters

must be given in “FaultParameters.ctl”. PCOMCOT takes the parameters of multiple rectangular

finite faults as input and calculates the static seafloor deformation with Okada’s half space model

(Okada, 1985). Then, the sea surface elevation caused by bottom displacement is used as the initial

condition for tsunami simulation. When the bathymetry of the source region is smooth and the

water depth is much less than the wavelength of bottom deformation, the surface elevation is almost

identical to the bottom vertical displacement. However, if the earthquake occurs near a steep slope

(e.g., a trench), the horizontal motion may be a non-negligible factor of tsunami generation, and this

contribution is considered with the formula of Tanioka and Satake (1996). If the earthquake occurs

under deep ocean, the surface deformation is smoother than the bottom deformation, because of

the low-pass filtering effect of seawater. In PCOMCOT, the series representation of Kajiura filter

in space domain is provided to account for such effect (Kajiura, 1963; Glimsdal et al., 2013). This

form of Kajiura filter is equivalent to its original form (i.e., the 1/cosh(kh) filter) in wavenumber

domain.

For forward simulation (Purpose of Calculation = 1), all the faults with their slip given by the

user are adopted in computation. For calculation of Green’s functions (Purpose of Calculation =
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2), the slip of all faults is set to be 1.0 m, and the resulting tsunami of each fault is calculated one

by one. An example of “FaultParameters.ctl” is shown in Figure 4.3. Following is the explanation

of each parameter.

Figure 4.3 Finite fault parameters in FaultParameters.ctl

Fault Rupture Starting Time: rupture starting time of fault in seconds. Kinematic rupture

process can be considered by assigning different rupture starting time to different subfaults.

Focal Depth: depth (m) of center of the rectangular fault.

Length of source area: length (m) of the rectangular fault (i.e., size along strike direction).

Width of source area: width (m) of the rectangular fault (i.e., size along dip direction).
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Dislocation of fault plate: amount of slip (m) on the fault.

Rake: rake angle (degree) of the fault slip.

Strike: strike angle (degree) of the fault.

Dip: dip angle (degree) of the fault.

Epicenter’s Latitude: y coordinate of the horizontal projection of the fault center. Its value is

in degrees for Earth coordinates and in meters for Cartesian coordinates.

Epicenter’s Longitude: x coordinate of the horizontal projection of the fault center. Its value is

in degrees for Earth coordinates and in meters for Cartesian coordinates.

4.3.6 Parameters in Stations.ctl

“Stations.ctl” is a three-column ASCII file, with the first two columns indicating the x and y

coordinates, and the third column giving the names of the stations, respectively. After simulation

is finished, the time series of surface elevation and horizontal volume flux at the location of each

station can be output. An example of “Stations.ctl” is presented in Figure 4.4.

Figure 4.4 Parameters in Stations.ctl

4.4 Output

All the output files of PCOMCOT are listed in Table 4.3. PCOMCOT creates a directory “PCOM-

COToutput” at the start of simulation, and puts the output files in this directory. Three types of

data are output by PCOMCOT – coordinate data, wavefield data and station data. The coordinate

data are stored in files “ xcoordintesXX.dat” and “ ycoordintesXX.dat”, which are the coordi-

nates of grid cells along x and y directions for No.XX layer. The wavefield data are the values of
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variables related with the wavefield, including bathymetry ( bathymetryXX.dat), snapshots of wa-

ter surface elevation (z XX xxxxxx.dat), volume flux (M XX xxxxxx.dat, N XX xxxxxx.dat) and

non-hydrostatic pressure at the bottom (Q XX xxxxxx.dat), and the maximum/minimum water

surface elevation (zmax XX.dat, zmin XX.dat). The station data are time series of water surface

elevation (Stationyyyy.dat), volume flux (Stationyyyy M.dat, Stationyyyy N.dat), and the non-

hydrostatic pressure (Stationyyyy Q.dat) at the locations of stations. Snapshots and time series of

non-hydrostatic pressure are output only when wave dispersion is included. The coordinate data

are output in ASCII format, while the wavefield data and station data are stored in binary format.

Note that the two-digit integers “XX” in the output file names are different from those in

the input bathymetry file names. For output, “XX” is a continuous integer starting from 01,

which indicates the order of each grid layer based on their bathymetry file names. For example,

if “layer02.nf/xyz”, “layer05.nf/xyz” and “layer12.nf/xyz” are provided by the user, then their

corresponding code in the output files are “01”, “02” and “03” respectively, despite their nesting

relationship. The six-digit integer “xxxxxx” in the snapshot file names represents the number of

time step, rather than the actual time. “yyyy” is a continuous four-digit integer starting from 0001,

which corresponds to the order of stations appearing in “Stations.ctl”.
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Table 4.3 Output Files of PCOMCOT

File Name Format Description

xcoordintesXX.dat ASCII x coordinates of No.XX layer; row vector

ycoordintesXX.dat ASCII y coordinates of No.XX layer; row vector

bathymetryXX.dat Binary bathymetry of No.XX layer

zmax XX.dat Binary maximum water elevation of No.XX layer

zmin XX.dat Binary minimum water elevation of No.XX layer

z XX xxxxxx.dat Binary snapshot of water elevation of No.XX layer at time step xxxxxx

M XX xxxxxx.dat Binary snapshot of flux component M

N XX xxxxxx.dat Binary snapshot of flux component N

Q XX xxxxxx.dat* Binary snapshot of bottom non-hydrostatic pressure Q

Stationyyyy.dat Binary time series of water elevation at station yyyy

Stationyyyy M.dat Binary time series of flux component M

Stationyyyy N.dat Binary time series of flux component N

Stationyyyy Q.dat* Binary time series of bottom non-hydrostatic pressure Q

* The non-hydrostatic pressure Q is normalized by water density.

The structures of all the wavefield data files, i.e., “ bathymetryXX.dat”, “z XX xxxxxx.dat”,

“zmax XX.dat”, “zmin XX.dat”, “Q XX xxxxxx.dat”, “M XX xxxxxx.dat” and “N XX xxxxxx.dat”

are the same. Because of the staggered grids we use, the dimensions of arraysM and N are different

from the others. Content of each line in a wavefield data file is:

(Line 1:) nColumn, nRow (2×integer*4)

(Line 2:) the first row of data (nColumn×real*8)

(Line 3:) the second row of data (nColumn×real*8)
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(Lines..) ...

(Line nRow+1:) the last row of data (nColumn×real*8)

The Format of station data files “Stationyyyy.dat”, “Stationyyyy M.dat”, “Stationyyyy N.dat” and

“Stationyyyy Q.dat” is:

(Line 1:) calculationPurpose, nFaults, nDataLength (3×integer*4)

(Line 2:) time (nDataLength×real*8)

(Line 3:) time series from the first fault (nDataLength×real*8)

(Line 4:) time series from the second fault (nDataLength×real*8)

(Lines..) ...

(Line nFaults+2:) time series from the last fault (nDataLength×real*8)

For forward simulation, there is only one time series in station data files. While for calcula-

tion of Green’s functions, there are multiple time series, each of which is the Green’s function

of a single subfault or subregion with initial surface displacement. Two Matlab scripts “COM-

COT readBinaryDataSnapShot.m” and “COMCOT readBinaryDataStation.m” are provided in Ap-

pendix A, to read the binary wavefild data files and station data files, respectively.
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5 Examples

A series of numerical experiments are conducted to validate PCOMCOT model for wave propaga-

tion, transformation, and inundation. For small-scale tests in Cartesian coordinates, we compute

the propagation of solitary wave on a flat bottom, oscillation of water surface in a paraboloidal

basin, and run-up of solitary wave on a circular island. These simulation results are compared

with analytical solutions and experimental data, and satisfactory agreement is obtained. For large-

scale modeling of realistic scenarios, the 2011 Tohoku earthquake tsunami is simulated in Earth

coordinates, and nested grid system is used. The computed tsunami waveforms agree well with

the recordings at tide gauges and DART stations. Compared with the shallow water model, the

non-hydrostatic model with dispersive effects gives much better predictions at the DART stations

in deep ocean. No filtering is applied in any example presented here.

5.1 Solitary Wave Propagation on Flat Bottom

As a solution of the classical Boussinesq equations, solitary wave propagation on a flat bottom has

become a standard test for dispersive wave models. With the balance between wave nonlinearity

and dispersion, a solitary wave maintains its shape throughout the propagation. We set up a

3000m-long, 100m-wide channel with a constant water depth of 10m. The x and y directions

are along the length and width of the channel, respectively. The grid size is set to be ∆x = ∆y

= 1m, and 100m-wide sponge zones are added to both ends of the channel. A 2m-high solitary

wave at the location x = 300m is given as the initial condition, corresponding to wave nonlinearity

ε = A/h = 0.2. Both the initial elevation and initial flux M should be provided in the input files.

The initial flux is calculated by multiplying the analytical velocity with the total water depth. The

simulation time is 200 s with the time step size set to be 0.05 s. Definitions of necessary parameters

in “pcomcot.ctl” are

Basic Control Parameters: Purpose of Calculation = 1, Initial condition = 0, Coordinate sys-

tem = 1, Total run time = 200.0, Time step = 0.05;

Parameters for Surface Deformation: Apply Kajiura filter = 0;

Parameters for Wave Physics and Numerics: Nonlinearity = 1, Dispersion = 1, Depth change

for Dispersion = 0, Water depth Limit for Dispersion = 0.1, Breaking = 0, Scheme for LSWEs
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= 0, Froude number Cap to Limit velocity = 10.0, Time interval to apply Filter = 10000.0;

Parameters for Boundary Condition: Boundary Condition = 2, Width of Sponge (West-East)

= 100.0, Width of Sponge (South-North) = 0.0, Maximum Manning coefficient in Sponge =

100.0, Damping coefficient A = 2.0, Damping coefficient R = 0.9;

Parameters for Inundation: Permanent dry limit = 50.0, Water depth Limit for wet −> dry =

0.01, Water depth limit for Bottom friction = 0.05, Manning coefficient for Bottom friction

= 0.0.
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Figure 5.1 Comparison of numerical results and the analytical solution for solitary wave propaga-
tion on a flat bottom. The two models make different approximations of the vertical distribution of
non-hydrostatic pressure. The governing equations of both models are the same as (2-21), except
different values of α and β.

In the above list, the parameter Depth change for Dispersion is set to be 0 for the flat bottom,
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corresponding to our new depth-integrated non-hydrostatic model with α = 2/3, β = 0.5 in the

governing equations (2-21). To show how the accuracy of wave dispersion is improved by our new

model, we also carry out the computation using the previous governing equations with α = 0.5,

β = 1.0 (Stelling and Zijlema, 2003; Yamazaki et al., 2009), by setting the parameter Depth change

for Dispersion to 1. The difference between our new model and the previous one lies in the

assumption on the distribution of non-hydrostatic pressure. Based on the Boussinesq equations,

our new model approximates the vertical distribution of p
dyn

using a simple quadratic function. In

comparison, the previous model assumes a linear vertical distribution, which has proved to be less

reasonable.

The simulation results given by two models are presented in Figure 5.1. At the first few

seconds, the wave profile is disturbed, due to using the analytical solution as the initial condition.

About 5 seconds later, the wave profiles of both models propagate stably along the channel, with the

crest height = 2.06m for our new model and 2.22m for the previous one. It is seen that the result

of our new model is very close to the analytical solution. While in the previous model, the wave

profile travels a little faster, and there is a small trailing wave following the crest. Thus, by adopting

a more realistic approximation of non-hydrostatic pressure distribution, slightly better results can

be obtained on smooth bottom. In real tsunami events where the water depth is non-uniform, the

difference between these two models would be smaller.

5.2 Fluid Oscillation in a Paraboloidal Basin

The oscillation of water surface in a paraboloidal basin is used to verify the moving boundary

technique for tsunami run-up. Analytical solutions of this type of motions are developed by Thacker

(1981) and are highly valuable for calibrating numerical inundation models (Cho and Kim, 2009).

One of the exact solutions of curved water surface oscillating in a circular paraboloidal basin is

presented here and compared with our numerical results. The still water depth is given as

h = h0

(
1− r2

a2

)
, (5-1)

where r is the distance from the rotational axis, a is the radius of the paraboloid, and h0 is the

water depth at the center. In this example, h0 is 1m and a is 2500m. The expression of water
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surface elevation varying with time and space is

η = h0

{
(1−A2)

1
2

1−A cosωt
− 1− r2

a2

[
1−A2

(1−A cosωt)2
− 1

]}
, (5-2)

in which the angular frequency ω and the non-dimensional parameter A are given as

ω =
1

a
(8gh0)

1
2 , A =

a4 − r40
a4 + r40

. (5-3)

Here, r0 = 2000m, ω = 3.54× 10−3 rad/s, A = 0.419, and the period of free oscillation is ∼1700 s.

In numerical computation, the grid sizes ∆x and ∆y are set to be 10m. The total simulation

time is 7000 s which covers 4 periods, and the time step size is 1 s to satisfy the C.F.L condition.

The initial surface elevation is defined with the expression (5-2) at t = 0. For comparison with

analytical solution, no bottom friction is considered. Wave dispersion is not included because

the fluid motions are governed by nonlinear shallow water equations. Definitions of necessary

parameters in “pcomcot.ctl” are

Basic Control Parameters: Purpose of Calculation = 1, Initial condition = 0, Coordinate sys-

tem = 1, Total run time = 7000.0, Time step = 1.0;

Parameters for Surface Deformation: Apply Kajiura filter = 0;

Parameters for Wave Physics and Numerics: Nonlinearity = 1, Dispersion = 0, Breaking =

0, Scheme for LSWEs = 1, Froude number Cap to Limit velocity = 10.0, Time interval to

apply Filter = 50000.0;

Parameters for Boundary Condition: Boundary Condition = 1;

Parameters for Inundation: Permanent dry limit = 50.0, Water depth Limit for wet −> dry =

0.01, Water depth limit for Bottom friction = 0.05, Manning coefficient for Bottom friction

= 0.0.

At the beginning of computation, the surface is convex. Driven by gravity, the surface drops

gradually with the shoreline expanding on the basin. When the run-up height reaches its maximum

and the surface becomes concave, the water begins flowing back towards the center. The surface rises

to its initial shape at the end of a period. Figure 5.2 displays the water surface profiles at different

moments on the cross section through the rotation axis. In the first two periods, the numerical
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model gives almost the same surface profiles as the analytical solutions. As the computation goes on,

the numerical diffusion of the upwind scheme makes water elevation lower than the exact solutions

when the surface rises.
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Figure 5.2 Comparison of water surface profiles on a paraboloidal basin between the analytical
solution and numerical result.

5.3 Solitary Wave Run-up on a Circular Island

The 1992 Flores Island tsunami impinged unexpectedly serious damage on the lee side of Babi

Island, Indonesia (Yeh et al., 1993), which sparked great interest of researchers in tsunami run-

up on a small island (e.g., Briggs et al., 1995; Liu et al., 1995; KÂNOĞLU and SYNOLAKIS ,

1998). The large-scale laboratory experiments of interactions between solitary wave and a circular

island were conducted by Briggs et al. (1995) at Coastal Engineering Research Center, Vicksburg,

Mississippi. These experiments reveal the fact that tsunami run-up on the sheltered backside of
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an island can be comparable or even higher than that on the front side in certain situations. The

collected data have been widely used for validation of various models, including shallow water

equations (Liu et al., 1995), Boussinesq equations (Chen et al., 2000) and non-hydrostatic model

(Yamazaki et al., 2009).

In the physical model, a 62.5 cm-high, 7.2m toe-diameter, and 2.2m crest-diameter circular

island with a 1:4 slope was located in a large basin. The initial solitary wave-like profiles were

generated by a directional spectral wave generator. Experiments were performed at two different

water depths (h = 32 cm and 42 cm), and solitary waves with three different height-to-depth ratios

(ε = A/h = 0.045, 0.096 and 0.181) were tested. In this example, the cases with water depth of

32 cm are simulated, and the computed results are compared with the experimental data provided

by NOAA Center for Tsunami Research. In the numerical model, a truncated cone with the same

size is set up in the 80m-long and 24m-wide computational region. 4m-wide sponge zones are

applied to both ends in x direction. Four gauges around the island are used to record the time

histories of water surface elevation. Gauge 6 is in front of the island at the toe. Gauges 9, 16 and

22 are near the still shoreline of the island, at the 0◦, 90◦ and 180◦ radial lines, respectively. A

schematic of the numerical test is shown in Figure 5.3. Note that in our numerical model, the island

center is located at x = 40m, y = 0m, which is different from the laboratory experiment. Thus,

the coordinates of gauges are adjusted to keep their relative locations to the island unchanged. The

coordinates of wave gauges in the numerical computation are given in table 5.1. ∆x = ∆y = 0.05m,

∆t = 0.01 s are used as the grid size and time step size, and the total simulation time is 35 s. A

solitary wave profile with the crest at x = 15m is given as the initial condition. The Manning’s

roughness coefficient is set to be 0.013, corresponding to smooth concrete surface. Since Liu et al.

(1995) reported that the wave broke in the laboratory realization, the eddy-viscosity scheme for

wave breaking is used in this example.
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Figure 5.3 Schematic of numerical test of solitary wave run-up on a conical island. (a) and (b)
are the top view and side view, respectively. In panel (a), the solid circles are the base and crest of
the island, and the dashed circle is the still shoreline. Locations of wave gauges around the island
are indicated by hollow dots.

Table 5.1 Coordinates of gauges in numerical test of solitary wave run-up.

gauge number x (m) y (m)

6 36.4 0.0

9 37.4 0.0

16 40.0 -2.58

22 42.6 0.0

Definitions of necessary parameters in “pcomcot.ctl” are

Basic Control Parameters: Purpose of Calculation = 1, Initial condition = 0, Coordinate sys-

tem = 1, Total run time = 35.0, Time step = 0.01;

Parameters for Surface Deformation: Apply Kajiura filter = 0;
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Parameters for Wave Physics and Numerics: Nonlinearity = 1, Dispersion = 1, Depth change

for Dispersion = 0, Water depth Limit for Dispersion = 0.05, Breaking = 1, Scheme for LSWEs

= 0, Froude number Cap to Limit velocity = 10.0, Time interval to apply Filter = 10000.0;

Parameters for Boundary Condition: Boundary Condition = 2, Width of Sponge (West-East)

= 4.0, Width of Sponge (South-North) = 0.0, Maximum Manning coefficient in Sponge =

100.0, Damping coefficient A = 2.0, Damping coefficient R = 0.9;

Parameters for Inundation: Permanent dry limit = 50.0, Water depth Limit for wet −> dry =

0.005, Water depth limit for Bottom friction = 0.005, Manning coefficient for Bottom friction

= 0.013.

The non-hydrostatic model and eddy-viscosity scheme provide numerical solutions of solitary

wave propagation and transformation around the island. The water surface profiles at different

moments in three cases are presented in Figure 5.4 and Figure 5.5. Figure 5.4 shows the moments

when the incident wave reaches the front face of the island, and 2 seconds later when the trapped

waves travel to the back side. Figure 5.5 illustrates how the trapped waves wrap around the island,

collide at the lee side, and then pass across each other. For A/h = 0.045 and 0.096, the water surface

is relatively smooth around the island, and no significant high-frequency dispersive waves can be

seen. For A/h = 0.181, the water surface becomes steep and rough at the back side, and evident

short dispersive waves are generated at the collision of trapped waves. After that, high-frequency

energy is leaking continuously from the trapped waves wrapping from the back to the front, leading

to the mesh-like wave pattern behind the island. Besides, the steep wave profile in the case of A/h

= 0.181 causes breaking all around the island, which reduces the run-up height at the lee side.

The computed time series of surface elevation at four gauges are compared with the laboratory

data in Figure 5.6. For each case, to adjust the timing of waveforms, the measured data at all gauges

are shifted by a uniform offset, so that the peak arrival time at gauge 6 is consistent with numerical

results. The primary waves are reproduced reasonably well by the numerical model, except that the

wave amplitude at gauge 22 is overestimated in the A/h = 0.181 case. The run-up and inundation

around the island are shown in Figure 5.7. Good agreement is obtained in all directions for the

three test cases, especially that the inundation for A/h = 0.181, which is difficult to simulate with

non-dispersive and non-breaking models (Liu et al., 1995), is well predicted here. We notice that

the computed run-up heights are slightly lower than the measured data at the front side for A/h =
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0.181, and the depressions behind the leading crests at all gauges tend to be underestimated. This

may be due to the slight loss of energy and momentum caused by our constraints on flow direction

in the moving boundary scheme. Nevertheless, the overall good agreement with laboratory data

demonstrates the capability of PCOMCOT for simulating propagation, transformation and run-up

of breaking dispersive waves.

Figure 5.4 Transformation of solitary waves on the front face of a conical island.
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Figure 5.5 Propagation and interaction of trapped waves at the lee side of a conical island.
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Figure 5.6 Comparison of measured and computed waveforms at four gauges.
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Figure 5.7 Comparison of inundation and run-up around the conical island between measurements
and the numerical model. The run-up heights are normalized by the incident wave height. The 0◦

and 180◦ directions correspond to the exposed front side and the sheltered lee side, respectively.

62



5.4 2011 Tohoku Tsunami

The tsunami triggered by the 2011 Tohoku earthquake is used to verify our dispersive model and

the nesting algorithm in a realistic scenario. This megathrust earthquake occurred near the trench

to the northeast of Japan, where the Pacific plate is subducted beneath the North American plate.

Extensive studies have revealed large coseismic slip extending to the updip edge of the fault (e.g.,

Fujii et al., 2011; Fujiwara et al., 2011; Satake et al., 2013), which caused the unexpectedly large

tsunami along the Pacific coast of Japan. The very shallow slip near the trench could lead to

relatively short-wavelength tsunami, and the effects of wave dispersion in deep ocean may be more

significant than in most earthquake tsunami events. Previous studies have suggested the importance

of dispersive models for predicting the tsunami waveforms at some DART stations (Baba et al., 2015;

Glimsdal et al., 2013; Saito et al., 2011).
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Figure 5.8 The earthquake source model and computational domains for the 2011 Tohoku tsunami.
The finite-fault model with heterogeneous slip is obtained by inverting the tsunami data. Magenta
triangle and black inverted triangles denote the DART station and GPS tide gauges, respectively.
Rectangular boxes outline the domains of nested grid layers.
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To simulate the 2011 Tohoku tsunami, we estimate a finite-fault model for the earthquake

source using an inverse algorithm. The fault geometry is obtained from the USGS moment tensor

solution, and is divided into 8 and 6 subfault patches in the along-strike and down-dip directions,

respectively. The slip on each subfault is then estimated by inverting the tsunami data based

on the linear shallow water equations. The seafloor deformation is calculated with Okada’s half-

space elastic model (Okada, 1985), and the contribution of horizontal motion to seafloor uplift

is considered with the formula of Tanioka and Satake (1996). The initial surface elevation is

determined by applying the Kajiura filter (Kajiura, 1963; Glimsdal et al., 2013) to the seafloor

displacement.

We compute the tsunami waves in two nested grid layers. The outer layer is from 138◦E to

152◦E in longitude, and from 33◦N to 44◦N in latitude, with a resolution of 1 arcmin. The inner

layer covers the northeastern coast of Japan (140.5◦E ∼ 142.5◦E, 37.5◦N ∼ 41◦N) at a resolution of

15 arcsec. A 200 km-wide sponge zone is surrounding the top layer is used to avoid wave reflection

on the boundary. The bathymetry data of both layers are extracted from GEBCO2020. Six tsunami

stations, including five GPS tide gauges 202, 613, 801, 803, 804 and a DART station 21418 are used

for comparison between the simulation results and the tsunami observations. The earthquake source

model, computational domains, and the locations of tsunami observation are displayed in Figure

5.8. Because frequency dispersion may be necessary for the transformation of tsunami waves when

propagating from deep ocean to the shallow water, dispersive models are used for both layers. Wave

nonlinearity is only considered in the inner layer. The total simulation time is 6000 s, with the time

step size set to be 2 s for the outer layer . The time step size for the inner layer is automatically set

to be 1.0 s , so that the C.F.L. number for both layers are almost the same. Definitions of necessary

parameters in “pcomcot.ctl” are

Basic Control Parameters: Purpose of Calculation = 1, Initial condition = 1, Coordinate sys-

tem = 0, Total run time = 6000.0, Time step = 2.0, Feedback to parent layer = 0;

Parameters for Surface Deformation: Consider Horizontal Motion = 1, Apply Kajiura filter

= 1, Use average depth for Kajiura = 1, Water depth Limit for Kajiura = 100.0;

Parameters for Wave Physics and Numerics: Nonlinearity = 1, Dispersion = 1, Depth change

for Dispersion = 0, Water depth Limit for Dispersion = 100.0, Breaking = 0, Scheme for

LSWEs = 0, Froude number Cap to Limit velocity = 10.0, Time interval to apply Filter =
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50000.0;

Parameters for Boundary Condition: Boundary Condition = 2, Width of Sponge (West-East)

= 200000.0, Width of Sponge (South-North) = 200000.0, Maximum Manning coefficient in

Sponge = 100.0, Damping coefficient A = 2.0, Damping coefficient R = 0.9;

Parameters for Inundation: Permanent dry limit = 100.0, Water depth Limit for wet −> dry

= 0.01, Water depth limit for Bottom friction = 0.05, Manning coefficient for Bottom friction

= 0.03.

The layer-specific parameters in “layers.ctl” are

Layer Name : 01

Nonlinearity = 0, Dispersion = 1, Depth change for Dispersion = 0, Breaking = 0, Scheme

for LSWEs = 1, Computing Start Time = 0.0, Time interval to apply Filter = 50000.0;

Layer Name : 02

Nonlinearity = 1, Dispersion = 1, Depth change for Dispersion = 0; Breaking = 0, Scheme

for LSWEs = 0, Computing Start Time = 0.0, Time interval to apply Filter = 50000.0.

Figure 5.9 displays the water surface profiles in these two grid layers at different moments. It

can be seen from the snapshots that the tsunami waves propagate seamlessly across the boundary

of nesting grids, and no unphysical oscillations are introduced. The comparison of water surface

profiles between the dispersive and non-dispersive models in Figure 5.10 shows evident dispersive

short waves caused by the large shallow slip. Figure 5.9 vividly depicts how frequency dispersion

influences the behavior of tsunami waves in the deep ocean and the shallow region, respectively.

In the deep ocean, a series of trailing waves are generated, and both the amplitude and steepness

of the leading wave are reduced. While when the wave front approaches the coast and becomes

sufficiently steep, dispersion begins to cause splitting of the wave. As a result, the leading wave is

amplified, and multiple short-period waves are formed near the crest.

The simulated and observed tsunami waveforms at six stations are presented in Figure 5.11.

The dispersive and non-dispersive models give almost identical results in the coast, which agree

well with the observation data. On the other hand, at the DART station 21418, the dispersive

model gives excellent predictions of the leading wave and the small trailing waves, which cannot be

reproduced by the shallow water model. These results suggest the importance of dispersive effects
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for predicting tsunamis induced by shallow earthquake sources in deep ocean, while shallow water

equations are accurate enough for modeling of local tsunamis in coastal areas.

In brief, the non-hydrostatic model for wave dispersion and the nesting algorithm perform

satisfactorily in terms of accuracy and stability. Implemented on 40 CPU cores, the time cost

of the dispersive model is only ∼2.5 times longer than that of the shallow water model. The

good balance between accuracy and efficiency achieved by PCOCMOT supports its application to

accurate large-scale tsunami modeling.
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Figure 5.9 Snapshots of water surface elevation given by the dispersive model in nested grids. The
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6 Citation of PCOMCOT
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Appendix A MatLab Scripts to Read PCOMCOT Output

A.1 A sample Matlab script to read snapshots

function [ x , y , dat ] = COMCOT readBinaryDataSnapshot ( fn )

l b s l a s h = s t r f i n d ( fn , ’ / ’ ) ;

i f ( isempty ( l b s l a s h ) )

path = ’ . / ’ ;

fn0 = fn ;

else

l b s l a s h l a s t = max( l b s l a s h ) ;

path = fn ( 1 : l b s l a s h l a s t ) ;

fn0 = fn ( l b s l a s h l a s t +1:end ) ;

end

i i = s t r f i n d ( fn0 , ’ ’ ) ;

i l a y e r = str2num( fn0 ( i i (1)+1: i i ( 1 )+2) ) ;

i f ( fn0 (1)== ’ ’ )

i i = s t r f i n d ( fn0 , ’ . dat ’ ) ;

i l a y e r=str2num( fn0 ( i i (1)−2: i i (1) −1)) ;

end

i f ( isempty ( i l a y e r ) == 1)

i l a y e r = 1 ;

end

x = load ( [ path , ’ x coo rd ina t e ’ , sprintf ( ’%02d ’ , i l a y e r ) , ’ . dat ’ ] ) ;

y = load ( [ path , ’ y coo rd ina t e ’ , sprintf ( ’%02d ’ , i l a y e r ) , ’ . dat ’ ] ) ;

i f ( ( fn0 (1 ) == ’M’ ) | | ( fn0 (1 ) == ’m’ ) )

x = x ( 1 :end−1)+0.5∗(x(2)−x ( 1 ) ) ;

e l s e i f ( ( fn0 (1 ) == ’N ’ ) | | ( fn0 (1 ) == ’n ’ ) )
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y = y ( 1 :end−1)+0.5∗(y(2)−y ( 1 ) ) ;

end

f i d = fopen ( fn , ’ rb ’ ) ;

StartTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

nco l = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ; %NX = nco l

nrow = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ; %NY = nrow

EndTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

dat = zeros ( nrow , nco l ) ;

for i = 1 : nrow

StartTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

dattmp = fread ( f i d , ncol , ’ r e a l ∗8 ’ ) ;

dat ( i , : ) = dattmp ( : ) ;

EndTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

end

fc lose ( f i d ) ;
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A.2 A sample Matlab script to read station data

function dat = COMCOT readBinaryDataStation ( fn )

f i d = fopen ( fn , ’ rb ’ ) ;

StartTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

ComputeGreen = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

NFaults = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

NDataLength = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

EndTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

i f (ComputeGreen ˜= 1)

nDatCol = NFaults+1;

else

nDatCol = 2 ;

end

dat = zeros (NDataLength , nDatCol ) ;

StartTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

t = fread ( f i d , NDataLength , ’ r e a l ∗8 ’ ) ;

dat ( : , 1 ) = t ( : ) ;

EndTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

for iCo l = 1 : nDatCol−1

StartTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

h = fread ( f i d , NDataLength , ’ r e a l ∗8 ’ ) ;

dat ( : ,1+ iCo l ) = h ( : ) ;

EndTag = fread ( f i d , 1 , ’ i n t e g e r ∗4 ’ ) ;

end

fc lose ( f i d ) ;
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Titov, V. V., and F. I. González (1997), Implementation and testing of the method of splitting

tsunami (MOST) model, in NOAA Technical Memorandum ERL PMEL-112.

Titov, V. V., and C. E. Synolakis (1998), Numerical modeling of tidal wave runup, Journal

of Waterway, Port, Coastal, and Ocean Engineering, 124 (4), 157–171, doi: 10.1061/(ASCE)

0733-950X(1998)124:4(157).

van der Vorst, H. A. (1992), Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing,

13 (2), 631–644, doi: 10.1137/0913035.

78



Wang, X., and P. L.-F. Liu (2006), An analysis of 2004 Sumatra earthquake fault plane

mechanisms and Indian Ocean tsunami, Journal of Hydraulic Research, 44 (2), 147–154, doi:

10.1080/00221686.2006.9521671.

Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe (2013), Generic mapping tools:

Improved version released, Eos, Transactions American Geophysical Union, 94 (45), 409–410, doi:

10.1002/2013EO450001.

Yamazaki, Y., Z. Kowalik, and K. F. Cheung (2009), Depth-integrated, non-hydrostatic model

for wave breaking and run-up, International Journal for Numerical Methods in Fluids, 61 (5),

473–497, doi: 10.1002/fld.1952.

Yamazaki, Y., K. F. Cheung, and Z. Kowalik (2011), Depth-integrated, non-hydrostatic model

with grid nesting for tsunami generation, propagation, and run-up, International Journal for

Numerical Methods in Fluids, 67 (12), 2081–2107, doi: 10.1002/fld.2485.

Yeh, H., F. Imamura, C. Synolakis, Y. Tsuji, P. Liu, and S. Shi (1993), The Flores Island tsunamis,

Eos, Transactions American Geophysical Union, 74 (33), 369–373, doi: 10.1029/93EO00381.

Zhu, Y., C. An, H. Yu, W. Zhang, and X. Chen (2024), High-resolution tsunami hazard assessment

for the guangdong-hong kong-macao greater bay area based on a non-hydrostatic tsunami model,

Science China Earth Sciences, 67 (7), 2326–2351, doi: 10.1007/s11430-023-1300-9.

Zijlema, M., and G. Stelling (2008), Efficient computation of surf zone waves using the nonlinear

shallow water equations with non-hydrostatic pressure, Coastal Engineering, 55 (10), 780–790,

doi: 10.1016/j.coastaleng.2008.02.020.

Zijlema, M., G. Stelling, and P. Smit (2011), SWASH: An operational public domain code for

simulating wave fields and rapidly varied flows in coastal waters, Coastal Engineering, 58 (10),

992–1012, doi: 10.1016/j.coastaleng.2011.05.015.

79


	=Introduction
	=Governing Equations
	Depth-integrated Non-hydrostatic Model
	Governing Equations in Cartesian Coordinates
	Governing Equations in Earth Spherical Coordinates

	=Numerical Method
	Solution of Shallow Water Equations
	Solution of Non-hydrostatic Model
	Moving Boundary Technique
	Wave Breaking
	Nested Grid Configuration
	Parallelization
	Intra-layer Communication
	Inter-layer Communication
	Parallelization of Implicit Solver

	Boundary Conditions
	Dealing with Numerical Instability

	=Configuration, Input and Output
	Programming Flow
	Compiling Source Files
	Input
	Parameters in pcomcot.ctl 
	Parameters in layers.ctl 
	Format of Bathymetry Files
	Format of Initial Elevation and Flux Files
	Finite Fault Parameters in FaultParameters.ctl 
	Parameters in Stations.ctl

	Output

	=Examples
	Solitary Wave Propagation on Flat Bottom
	Fluid Oscillation in a Paraboloidal Basin
	Solitary Wave Run-up on a Circular Island
	2011 Tohoku Tsunami

	=Citation of PCOMCOT
	Appendix MatLab Scripts to Read PCOMCOT Output 
	A sample Matlab script to read snapshots
	A sample Matlab script to read station data

	=References

