船舶与海洋工程系
电子邮件:li.h.chen@sjtu.edu.cn
通讯地址:上海交通大学木兰楼B617
2021 - 澳门太阳网城官网 教授
2010 - 2011 美国密西根大学机械工程系 访问学者
2004 - 上海交通大学机械与动力工程学院 副教授
1997 - 2000 上海交通大学机械工程系 工学博士
1994 - 1997 湖南大学机械工程系 工学硕士
1990 - 1994 湖南大学机械工程系 本科
智能绿色动力系统设计与控制,包括多能源混合动力系统、电力驱动系统、系统动态模型、随机特性概率模型、热耦合模型、机器学习模型、多目标优化设计、混合动力切换控制、能量管理、自适应控制、鲁棒控制等
应用领域:低碳船舶,新能源汽车,新能源飞机
IEEE会员,SAE会员,国际控制联盟IFAC先进汽车控制技术委员会成员,国际汽车变速器及驱动技术会议技术委员会成员,中国造船工程学会轮机学术委员会成员,期刊审稿人(IEEE Transaction on Mechatronics, IEEE Transaction on Vehicular Technology, Control Engineering Practice等),《海洋工程装备与技术》编委
p40, “深蓝计划”基金重点1类子课题,深远海用常值守无人艇高密度安全储能与智能综合能源管理
p39, 产学研合作,某消防舱温度场与热应力计算分析
p38, 海洋工程国家重点实验室开放课题(参与),船舶大功率无线充电关键技术研究
p37, 产学研合作,多模式混合动力系统自适应控制研发
p36, 产学研合作,eCS变速箱干式离合器热模型的研究与开发
p35, 工信部高技术船舶科研项目子课题,动力系统选型研究专题
p34, 工信部高技术船舶科研项目子课题,推进系统节能技术研究专题
p33, 海洋智能装备与系统教育部重点实验室开放基金课题,考虑能量流策略的无人船光伏-柴-电混合动力系统优化设计
p32, 工信部高技术船舶科研项目子课题,动力系统及辅助系统总体规划研究
p31, 国际合作,Traction Motor Rotor Thermal Modeling
p30, 国家自然科学基金(参与),“锂-能-环”纽带关系及其协同机制研究”
p29, 产学研合作,线控转向关键技术研发
P28, 产学研合作,双离合器自动变速器温度模型研发
P27. 产学研合作,变速箱控制器测试平台研发
P26. 产学研合作,变速箱系统动力学仿真台架验证试验
P25. 产学研合作,高压电池管理系统技术调研与工程服务
P24. 产学研合作,混合动力控制器中的离合器控制研究
P23. 产学研合作,变速箱离合器三大基础模型研究
P22. “十二五”国家科技支撑计划重大项目子课题:高速磁浮车辆线路模态分析软件开发与代码测试研究
P21. 产学研合作,变速箱与离合器集成测试平台开发
P20. 产学研合作,动力传动电子控制系统及其测试技术的现状与发展趋势咨询
P19. 上海市软件与集成电路产业发展专项课题:汽车电子产业创新能力的培育与发展研究
P18. 国家自然科学基金,基于单电机的多模式混合动力耦合传动动力学机理与控制研究(51475284)
P17. 产学研合作,乘用车自动变速器与无级变速器效率比较与试验研究
P16. 产学研合作,电动汽车动力传动系统试验台架系统与控制
P15. 国家自然科学基金,热环境中离合传动动力学机理与控制研究
P14. 上海市软件与集成电路产业发展专项课题:汽车底盘与动力电控系统关键执行器技术研究
P13. 国际合作,干式双离合器自动变速器(DCT)的高效执行系统设计与控制研究
P12. 国际科技合作项目:面向中美清洁能源合作的电动汽车前沿技术研究子课题“纯电动(含增程式)驱动系统集成控制研究”
P11. 产学研合作,乘用车手动变速器箱敲击噪声机理与试验研究
P10. 产学研合作,自动变速器液压系统建模与硬件在环控制
P9. 上海市经委,新能源汽车技术经济分析
P8. 博士点新教师基金项目“基于动态信息融合的双离合器自动变速器控制研究”
P7. 上海市科委创新行动项目,双行星轮系变速驱动总成研究与开发
P6. 国家863项目,SWB6116混合动力客车研究
P5. 上海市科委登山行动计划项目,混合动力汽车自动变速器关键技术及其产业化技术研究
P4. 产学研合作,汽车电子LIN总线开发
P3. 产学研合作,混合动力汽车经济性分析
P2. 上海市科委登山行动计划项目,汽车电子电器优化
P1. 上海交通大学振动、冲击、噪声国家重点实验室开放基金课题,高速行驶中车载式表面平整度检测系统的抗振研究,项目负责人
期刊论文(英文):
J31. Model Reference Adaptive Control Based on Adjustable Reference Model during Mode Transition for Hybrid Electric Vehicles, Mechatronics (2022)
J30. Thermal behavior of friction discs in dry clutches based on a non-uniform pressure model, Case Studies in Thermal Engineering, 32(2022), 101895
J29. Scheduling Period Selection Based on Stability Analysis for Engagement Control Task of Automatic Clutches,Applied Sciences, 11(2021),8636.
J28. An Adaptive Hierarchical Control Approach of Vehicle Handling Stability Improvement Based on Steer-by-Wire Systems,Mechatronics, 73(2021), 102583
J27. Decoupling Internal Model Control for the Robust Engagement of Clutches, Mechatronics, 73(2021), 102466
J26. Bi-level optimal sizing and energy management of hybrid electric propulsion systems, Applied Energy, 2020, 260 (114134):1-15
J25. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships. Energy, 177 (2019) 247-261
J24. Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel, Applied Energy, 2018,226:423-436
J23. Modeling and Simulation Study of a Novel Electro-Mechanical Clutch Actuation System, Advances in Mechanical Engineering, 2017, 9(8):168781401772040
J22. Improved Clutch Slip Control for Automated Transmissions, IMechE, Part C: Journal of Mechanical Engineering Science, , 2018, 232(18) 3181–3199
J21. Design, Modeling and Analysis of Wedge-based Actuator with Application to Clutch-to-Clutch Shift, Proc. IMechE, Part D: Journal of Automobile Engineering, 2018, 232(9) 1149–1166
J20. Modeling and Experimental Validation of Lever-based Electromechanical Actuator for Dry Clutches, Advances in Mechanical Engineering, 2017, 9(8):168781401771519
J19. Stability Analysis of a Force-aided Lever Actuation System for Dry Clutches with Negative Stiffness Element [J], Journal of Shanghai Jiao Tong University, 2018, 23(2): 218–226
J18. Design, Modeling and Validation of Clutch-to- Clutch Shift Actuator Using Dual-Wedge Mechanism, Mechatronics, 2017(42):81-95
J17. Stability and Response of a Self-amplified Braking System under Velocity-dependent Actuation Force, Nonlinear Dynamics, 2014, 78(4):2459-2477
J16. Modeling and Stability Analysis of Wedge Clutch System, Mathematical Problems in Engineering, 2014, Article ID 712472, 12 pages, doi:10.1155/2014/712472
J15. Experimental Study on Shift Quality Improvement for Automatic Transmission Using Motor Driven Wedge Clutch, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2014, 228(6):663–673
J14. Dynamic modeling and systematic control during mode transition for a multi-mode hybrid electric vehicle, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2013, 227(7):1007-1023
J13. Design and analysis of a novel multi-mode transmission for a HEV using a single electric machine, IEEE Transactions on Vehicular Technology, 2013, 62(3):1097-1110
J12. Torque Coordination Control During Mode Transition for a Series–Parallel Hybrid Electric Vehicle, IEEE Transactions on Vehicular Technology, 2012, 61(7):2936-2949
J11. Experimental and control study of slipping decay time of a wedge clutch in an automatic transmission. DSCC 2012-MOVIC 2012, v1, p151-156, 2012.
J10. Model referenced adaptive control to compensate slip-stick transition during clutch engagement. International Journal of Automotive Technology, 2011, 12(6): 913-920.
J9. Application of switching traction and braking systems in longitudinal control for series–parallel hybrid electric buses. International Journal of Vehicle Design, 2011, 56(4):299–316.
J8. Design and Analysis of an Electrical Variable Transmission for a Series-Parallel Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology, 2011, 60(5):2354-2363
J7. Optimal Torque Control Strategy of Electric Transmission Driver Based on AMT During Gear Shift , Journal of Shanghai Jiao Tong University (English Edition), Vol. 2, 2009
J6. A new type compositive hybrid power system-E.T.Driver and its application in HEV, WSEAS transactions on systems. 2008, 7(3): 203-218.
J5. System dynamic modeling and optimal torque control strategy for E.T Driver based on AMT, WSEAS transactions on systems,2008(07):742-760.
J4. Active front steering during braking process, Chinese Journal of Mechanical Engineering(English Edition), 2008, 2(4):64-70
J3. Integral power management strategy for a complex hybrid electric vehicle – catering for the failure of an individual component, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(5):719-727
J2. The System dynamics modeling and adaptive optimal control for automatic clutch engagements of vehicles, IMechE J. Automobile Engineering, Part D., 2002, 216(12):983-991
J1. Feedback linearization control for electronically controllable clutch of vehicle, Chinese Journal of Mechanical Engineering (English Edition), 1999, 12(4):303-311
期刊论文(中文):
JC24、基于外推高斯过程回归方法的发动机排放预测,上海交通大学学报,2022
JC23、破冰船柴电混合动力系统优化设计及敏感性分析,中国舰船研究,2021, 16(5): 127–136
JC22、考虑延迟的线控转向二自由度内模控制,中国机械工程,2021, (32):1904-1911,1920
JC21、考虑延迟的线控转向系统自适应内模控制,上海交通大学学报, 2021, (10): 1210 -1218
JC20、线控转向系统的前轮转角跟踪策略研究,机械工程学报,2020,55(22):
JC19、考虑膜片弹簧非线性的干式离合器位置闭环控制,汽车工程,2020,42(7):894-908
JC18、双离合器自动变速器换挡过程的内模控制,汽车工程,2020,42(4):477-483
JC17、含时滞反馈的楔式制动系统动力学分析,应用力学学报,2020,37(2):486-493
JC16、基于稳定性分析的电控离合器任务调度周期设计,上海交通大学学报,2019,53(04):56-64
JC15、汽车线控转向系统研究进展综述,汽车技术,2018(4):23-34
JC14、混合动力船舶动力装置及能量管理研究综述,舰船科学技术,2018,40(3):1-7
JC13、干式DCT主离合器的二参数温混合动力船舶动力装置及能量管理研究综述度模型研究,汽车工程,2018,40(6):706-712)
JC12、混合动力船舶模式切换过程力矩协调控制研究,中国机械工程,2017,28(23):2859-2867
JC11、基于模型参考控制的混合动力模式切换研究,上海交通大学学报, 2017, 51(10): 1196-1201
JC10、干式DCT主离合器的有限元传热模型与实验验证[J]. 传动技术, 2016, 30(4):3-8
JC9、基于增益自调整PID的楔形离合器换挡性能优化控制,汽车技术,2015,7:10-15
JC8、楔形离合器系统的正压力观测[J]。汽车技术,2014,4:10-13
JC7、采用多模式变速器单电机混合电动汽车的分析与仿真. 汽车安全与节能学报, 2012,3(3):265-275
JC6、基于稳定性分析的离合器接合过程抖振机理与控制研究,系统仿真学报,2011,23(7): 1451-1458
JC5、混合动力汽车行星齿轮机构的方案设计与优选. 中国机械工程,2010,(001): 104-109
JC4、高速电磁开关阀非线性模型简化与验证,上海交通大学学报,2010,44(7): 1005-1009.
JC3、基于参考模型自适应控制提高自动离合器接合品质,系统仿真学报,2009,21(16):5102-5104
JC2、基于混合定时调度的车辆AMT控制系统的实时性分析,上海交通大学学报,2007,41(1):256-261
JC1、基于局部非抢占式定时调度的汽油机控制系统实时性分析,上海交通大学学报,2006,40(1):167-171
会议论文:
C39. Optimization of PV-hybrid power system considering environmental uncertainties. The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C38. GPR for quantifying uncertainty in modeling of motor efficiency map for electric ships. The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C37. A Novel Energy Management Strategy for Hybrid Electric Polar Cruise, The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C36. Optimal Design of Hybrid Electric Propulsive System for A Mini Polar Cruise, 31th International Ocean and Polar Engineering Conference – Rodos, Greece. Online/Virtual Conference, June 20-25, 2021
C35. Bi-objective optimization of diesel/battery hybrid electric propulsion system for polar icebreaker. 31th International Ocean and Polar Engineering Conference – Rodos, Greece. Online/Virtual Conference, June 20-25, 2021
C34. 基于高斯过程机器学习的发动机排放预测方法, 2021中国汽车工程学会年会暨展览会( China SAE Congress & Exhibition,(SAECCE)),上海,2021年10月19-21日
C33. 极地破冰船柴电混合动力系统优化设计及参数敏感性分析,第四届高新船舶与深海开发装备创新论坛,2020年10月
C32. Transient thermal behavior of dry clutch under non-uniform pressure condition, SAE2020-01-1418
C31. Internal Model Control During Mode Transition Subject To Time Delay For Hybrid Electric Vehicles, SAE2020-01-0961
C30. Optimization of PV-hybrid electric propulsion system with environment uncertainty. 30th International Ocean and Polar Engineering Conference (ISOPE 2020), Shanghai, China, 2020-10-12至2020-10-16
C29. Optimal Sizing of Sail-assisted PV/Shore Power Hybrid Propulsion Systems, 30th International Ocean and Polar Engineering Conference (ISOPE 2020), Shanghai, China, 2020-10-12至2020-10-16
C28. Four-parameter real-time thermal model for dry DCTs, Proceedings of China SAE Congress 2019, selected papers
C27. Four-parameter Real-time Thermal Model for Dry DCTs, 2019 China SAE Congress & Exhibition (SAECCE), Shanghai, China, October 22 th -24th, 2019
C26. Internal Model Control for Robust Engagement of Clutches, 2019 IEEE 3rd Conference on Control Technology and Applications, August 19-21, 2019, City University of Hong Kong, China
C25. Multi-objective optimal design of a plug-in hybrid electric propulsion system for a catamaran, 29th International Ocean and Polar Engineering Conference (ISOPE 2019), Honolulu, Hawaii, USA, June 16-21, 2019
C24. Analytical Study on Dynamics of Wedge Braking Systems with Time Delay[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2019, 259(4): 5627-5638
C23. Model Reference Control during Mode Transition for a Single-Motor Hybrid Electric Vehicle, 14TH International Symposium on Advanced Vehicle Control, 2018, Beijing, China
C22. Model Reference Adaptive Control during Mode Transition of a Parallel Hybrid Electric Vehicle, PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE, 2018:92-97, June 27-29, Milwaukee, USA
C21. LQ Control during Clutch Engagement for Automatic Transmissions, PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE, 2018:490-495, June 27-29, Milwaukee, USA
C20. A multi-objective optimization method for hybrid electric propulsion system, Proceedings of the International Offshore and Polar Engineering Conference, 2018:664-671, June 10-15, Sapporo, Japan
C19. Influence of calculation interval on engagement quality of electronically controlled clutches. Proceedings of the ASME 2017 Dynamic Systems and Control Conference (DSCC2017), October 11-13, 2017, Tysons, Virginia, USA. DSCC2017-5272
C18. A New Rotating Wedge Clutch Actuation System. SAE 2017
C17. Dynamical behaviors of an electromechanical actuator with nonlinear stiffness load in dry clutches. 46th 46th International Congress and Exposition on Noise Control Engineering, August 27-30, 2017, Hongkong
C16. Stability Analysis of Motor-Driven Actuators in Dry Clutches with Nonlinear Stiffness Element. 2017 American Control Conference, May 24-26, 2017, Seattle, Washington, USA
C15. Self-tuning PID design for slip control of wedge clutches, SAE 2017-01-1112
C14. A New Clutch Actuation System for dry DCT, SAE 2015-01-1118
C13. A Brief Analysis of Factors Influencing the Efficiency of THS, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C12. Normal Force Observation of the Wedge Clutch System, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C11. Model Reference Control to Reduce both the Jerk and Frictional Loss during DCT Gear Shifting, 2013 American Control Conference, June 17-June 19, 2013, Washington, DC, USA
C10. Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China, Best Paper Award
C9. Control Oriented Universal Format Model for Planetary Gear Transmission, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou China
C8. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19,Best Student Paper Award
C7. Torque coordination of clutch, engine and motor during power transition for a hybrid electric bus, IEEE 7th Vehicle Power and Propulsion Conference, Chicago, USA, 2011.9.6-9
C5. Modeling of a Wedge Clutch in an Automatic Transmission. 2010, SAE paper: 01-0186
C4. Architecture Design and Performance Analysis of a Novel Electrical Variable Transmission for a Hybrid Car. 10th International Symposium on Advanced Vehicle Control, August 22-26, 2010, Loughborough, UK
C3. Robust scheduler design for automatic mechanical transmission real-time control, SAE Paper 2006-01-1490
C2. Real-time Analysis for electronically controller Unit of vehicle automatic mechanical transmission, SAE Paper 2005-01-3589
C1. WCET Analysis for engine control, IEEE International Conference on Mechatronics and Automation, ICMA 2005, 2005, p 2090-2095
本科生课程:传热学,力学仿生——启示与探索
研究生课程:动力系统建模与仿真
美国发明专利3项,中国发明专利10余项
2021,第十届全国海洋航行器设计与制作大赛,三等奖,指导的作品名称““黑鲨号”水下机器人”
2020,第九届全国海洋航行器设计与制作竞赛,一等奖,指导的作品名称“仿生海龟水陆两栖机器人”
2020,第九届全国海洋航行器设计与制作竞赛,一等奖,指导的作品名称“思源号水下机器人”
2013, Best Paper Award, Longsheng Cai, Li Chen, Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China;
2012, Best Student Paper Award, J. Yao, L. Chen*, F. Liu, C. Yin, C. J. Lee, Y. Dong, Y. Huang, C. Kao, and F. Samie. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19
聘期考核优秀(2015,2018,2021)
2019,上海交通大学教学成果特等奖(排名第三)
2016,上海交通大学优秀教师三等奖
2014,上海市科技进步二等奖
2008,晨星计划教师;
3 Optimal design of a hybrid electric propulsive system for an anchor handling.pdf
2 Bi-objective optimal design.pdf
5 Design and Analysis of an Electrical Variable Transmission.pdf
6 Stability and response of a self-amplified braking system.pdf
4 Design and validation of clutch-to-clutch shift actuator.pdf
7 Torque Coordination Control During.pdf